Chapter 6: Theoretical Formulation

T heor etical
Formulation

6.1. Introduction

ARPS is a nonhydrostatic atmospheric prediction model and is
appropriate for use on scales ranging from a few meters to hundreds of
kilometers. It is based on compressible Navier-Stokes equations describing the
atmospheric flow, and uses a generalized terrain-following coordinate system.
A variety of physical processes are taken into account in the model system. In
this chapter, we describe the theoretical and numerical formulation of the
dynamic equations and the treatment of various physical processes.

In Section 6.2, the dynamic equations and their numerical formulations
are first described. In Section 6.3, three closure schemes for subgrid-scale
turbulence are discussed. In Section 6.4, several types of computational
mixing are described, and in Section 6.5, various boundary condition options
are presented. Sections 6.6, 6.7, and 6.8 describe, respectively, the treatment
of microphysical processes, surface layer physics, and the soil model with
coupled surface energy budget equations.

6.2. Dynamic Equations and Numerical Formulations

The governing equations of the atmospheric model component (as
opposed to the other components of the model system such as the soil model)
of the Advanced Regional Prediction System (ARPS) include momentum,
heat (potential temperature), mass (pressure), water substances, turbulent
kinetic energy (TKE), and the equation of state. These equations are
represented in a curvilinear coordinate system which is orthogonal in the
horizontal. The governing equations used are the result of direct
transformation from the Cartesian system, and are expressed in a fully
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conservative form. These equations are solved in a rectangular computational
space. Solution algorithms are discussed in subsequent sections.

6.2.1. The coordinate system

The governing equations of ARPS are written in a curvilinear
coordinate system (¢, n, {) defined by

=X,
n=y, (6.2.1)
¢=4(x Y, z),

or equivalently, by

x=¢,
y=n, (6.2.2)
z=2¢n, ).

This coordinate system is a specia case of the fully three-dimensional
curvilinear system, since the constant ¢ and . surfaces remain the same as

those of constant x and y. Vertical grid stretching and alower grid surface that
is conformal to the terrain are accommodated by the vertical transformation.

The governing equations for fluid motion in a fully 3-D curvilinear
system can be found in the literature (e.g., Thompson et al., 1985). Sharman et
al. (1988) and more recently Shyy and Vu (1991) discuss the choice of
velocity vectors (covariant, contravariant and Cartesian velocity, etc.) that
allow a conservative formulation of the momentum equations (see Appendix
B). Following their work, we use the Cartesian velocity components instead of
the contravariant components of velocity as the basic dependent variables.

As shown in Sharman et al. (1988), the Cartesian velocity components
u, v and w can be expressed as functions of the contravariant velocities U¢, V¢
and WE,

e OX e 0X 0X
u=U a5+Va,7+V\/°aZ,

_cOY Oy oy
v=U 6;’+V6/7+WCOZ’ (6.2.3)

02007 00
w=Uae Vi T Waz
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The inverse transformation is given by

UG = udlz+vIpe+ Wiy
VEYG = ud¥e+ vaZe+ wiZr, (6.2.4)
WG = udf + vz, + Wi,

where the Jacobians of transformation are defined as

z Ea(y,z)
‘]:;Z an7) (6.2.5)

and VG is the determinant of the Jacobian matrix of transformation from the
(&, n, Q) systemto the (X, y, 2) system:

a( ) XE X’7 XZ

X,Y,Z

JG = 6(6,3;,5) = YeYn Vel - (6.2.6)
ZE 2,7 ZZ

A conservation equation in the transformed coordinate system for a
scalar ghastheform

0(/Gg) , A(GU @) , IV g)  A(NGW ¢)

=S\JG. 2.7
5 2 on 57 SVG. (627

assuming that the fluid is incompressible. In the above, Sis a source and/or
sink term for variable @

The coordinate transformations defined by (6.2.1) are

0z
vz — X XY —
In¢= FY4 IpE0 Ine=0
_ _ 0z _
=0 JZe= a J%=0 (6.2.8)
0z 0z
yZ = « = Xy =
Yen=-g¢ Jin=-5, Ja=

and
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0z

\/6=d—z

_ (6.2.9)

Note that most of these Jacobians are either zero or constant in this
specia case. We denote the non-zero components as

_ yz _ 0z
G = Eﬂ__g
= X = 0z
‘]2= En_-ai
n, (6.2.10)
0

The fully three dimensional transformation Jacobian VG is thus

VG =] . (6.2.11)

According to the definition of the contravariant velocities in (6.2.4),
we have

UC = UJ3 /\/6 ,

Ve=vl; /G, (6.2.12)

We=(ud +vd+w)/ /G -

Assuming that ¢ increases monotonically with z J3 = 0 and therefore
J3=VG. Wealso have US = uand V¢ = v. J3> 0 is always assumed in ARPS;
therefore, Jz is equivalent to VG in the remainder of this Guide.

It follows that the transformation relations for spatial derivatives from
Cartesian (x,y,2) coordinates to the curvilinear coordinate (&, n, {) are

dp_ 1| a 0

&_TG 075(\]34))4-67((\]1 @}

dp_ 1| d d

ay_G6,7(33@+M(32(,4 (6.2.13)
dp 1 Od¢

0z~ Jg ol
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In ARPS, the computational grid can be arbitrarily defined. The
transformation Jacobians are calculated numerically according to (6.2.10) after
the computational grid is defined. These Jacobians are used to formulate the
governing equations in computational space. Section 7.3 discusses the
available options for the computational grid setup in ARPS.

6.2.2. The governing equations
a) The model base state

In ARPS, wind components and the state variables are defined as the
sums of base-state variables and the deviations from the base state. The base
state is assumed to be horizontally homogeneous, time invariant and
hydrostatically balanced. For this reason, the base-state mass and wind fields
are, in general, not in a geostrophic balance, except when the base-state winds
are zero.

In the model, the base state can be initialized using prescribed
analytical functions or an external sounding. When the model is initialized
using an external data set, the base state is usually constructed as the
horizontal domain average. This is true when the external data set is created
using ARPS external data pre-processor EXT2ARPS. The horizontal
homogeneity of the base state does not prevent one from initializing ARPS
with fully 3-D initial fields. A base state that is closer to the total field will
give better accuracy.

The following model variables can be written as:

uxyzt) = U2+ U (Xxyzt)

vixy,zt) = V(2+V(xyzl)

w(Xy,zt) = w (xYy,zt)

o(xyzt) = 6 2+ 8 (xyz) (6.2.14)
p(xyzt) = P +p (xyzl)

p(xyzt) = p @+ p XYzl

qV (X,y,Z,t) = qv (Z) + qVI (X,y,Z,t)

di (xYy,zt) = ai' (xy.zt)

where u, v and w are the Cartesian components of velocity (momentum), 6the

potential temperature, p the pressure, p the density, g, the water vapor mixing
ratio, and q; one of the hydrometeor categories. The over-barred variables
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represent the base state and the primed variables are the deviations. The base
state for w and q;; - is assumed zero.

In the transformed coordinate system, Egs. (6.2.14) become

u&ndy = u(nd+u(&ndy

vgndy = v(End+v(End)

w(ndt = w(éndy)

O(Endt) = 8(End+ 6 (Endy (6.2.15)
pEndt) = pEnd+p (End)

pndt) = pnd+p &ndY

av (&) = aq.(&End+av (&n.d).

ai (&4 = ai(€n.db)

The original x- and y-independent base-state variables now become
functions of all three independent variables (¢, n, {) in the new coordinate
system. Therefore, the base-state arrays in the model are three dimensional.
The base-state arrays vary along the coordinate surfaces when these surfaces
are not flat. Thisisusually true when terrain is included.

The base state atmosphere is assumed to satisfy the hydrostatic
relation:

op _ .
5= ~J/G pg. (6.2.16)

b) The governing equations

ARPS solves prognostic equations for u, v, w, &, p' and gy, which are,
respectively, the x, y and z components of the Cartesian velocity, the
perturbation potential temperature and perturbation pressure, and the six
categories of water substance (water vapor, cloud water, rainwater, cloud ice,
snow, and hail).

The equation of state for an atmosphere containing water constituents
is given by (see Proctor, 1987)

p = % (1 - gj—iqv) (1 + QV + qliquid+icewater ) (6217)
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where T isthe air temperature, Ry the gas constant for dry air, and € = Ry/Ry =
0.622 is the ratio of the gas constants for dry air and water vapor. Qjiquid + ice
water represents the total liquid and ice water content.

For convenience, we define the following variables:

p=VGp

u=p"u

vVi=p'v (6.2.18)
w =p"w

WE* = p" WE,

The momentum conservation equations are, respectively,

aU*_ « o0u .ou . o0u
oM & +V% + W a
aag {Jg( p- aDiv’) } + 57 {Jl (p-aDiv') } (6.2.19)
v |o'fu- pfw|+ VB Dy,
aV* _ « 0V « OV . OV
a - |Mag T an W a (6.2.20)
n {Jg(p'-aDiv*) }+OZ{J2 (p'-aDiv*)}
-p fu+y/G Dy,
0, « _ « OW . OW ow
E(PW)—- ua—5+ an + WY o
(6.2.21)

-:Z(p'-aDiv*)+p*B+p* fu+G D,
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Terms on the right hand side of Egs. (6.2.19) and (6.2.20) are, in order,
momentum advection, perturbation pressure gradient force and Coriolis force
term. The terms D, and D, contain the subgrid scale turbulence and
computational mixing terms. The Coriolis effect due to vertical motion is also

included. The Coriolis coefficients are f = 2Q sin(¢) and f = 2 Q cos(¢),

where Q is the angular velocity of the earth and @is latitude. The horizontal
base-state pressure gradient terms vanish because the base-state pressure is
assumed to be horizontally homogeneous. The removal of the base-state
pressure gradient terms from the equations reduces the computational error
associated with the terrain-following coordinate (e.g., Janjic, 1977).

In obtaining the above equations, linearization approximations are
made. The state variables that appear in the coefficients of certain terms are
replaced by their base-state values. This is true for the density in the pressure
gradient force. These approximations are consistent with those in the anelastic
systems (Ogura and Phillips, 1962; Wilhelmson and Ogura, 1972).

The vertical momentum equation (6.2.21) has one more term than
horizontal momentum equations; the buoyancy term. The total buoyancy B is
derived from the equation of state, (6.2.17):

p' o' p' + dy CI;/ * Giquigrice

2 era T Tra, | (6.2.22)

where ¢,=4/YRT is the acoustic wave speed, y =Cp/Cy is the ratio of the

specific heat of air at constant pressure and volume and R is the gas constant
for dry air. Term Q. representsthe total liquid and ice water content.

The terms involving a Div" in Egs. (6.2.19) — (6.2.21) are artificial
“divergence damping” terms designed to attenuate acoustic waves, where Div"
is the density weighted divergence defined by

o, o, o
o0&~ an Y4

Div'= i

VG

: (6.2.23)

and a is the damping coefficient.

CAPS - ARPS Version 4.0 120



Chapter 6: Theoretical Formulation

The effect of these terms can be clearly seen by performing the
divergence operation on the momentum equations, i.e., 0(6.2.19)/0x +
0(6.2.19)/0y + 9(6.2.19)/0z to obtain the following equation:

%(Div* ) =a 0?(Div*) +.. (6.2.24)

The divergence damping terms form a diffusion term acting on the three
dimensional divergence, and thus serve to damp acoustic modes. Skamarock
and Klemp (1992) show that unstable acoustic modes can be excited in the
mode-splitting time integration system used by ARPS, but can be effectively
controlled by divergence damping or by using backward-in-time biasing
(Durran and Klemp, 1983) when the w and p equations are solved implicitly.
The divergence damping has little effect on the meteorologically significant
wave modes.

The mixing terms denoted by D in Egs. (6.2.19)—(6.2.21) will be
discussed separately in Section 6.3 and 6.4.

For thermal energy conservation, the potential temperature (6 )is the
prognostic variable. The potential temperature is materially conservative in
the absence of diabatic processes. In the model, the actual prognostic variable
is the potential temperature perturbation, 8, and the associated equation is

o, . . |.06 o8 o6
P 0= —|u GtV G+ W 5e

(6.2.25)

« 06
—| pw— |+4/GDy+y/G Sp.

0z

The right hand side terms are, respectively, the perturbation potential
temperature advection, the base-state potential temperature advection, mixing,
and heat source / sink effects representing contributions from microphysical
processes, radiation and any other heating / cooling effects. The horizonta
advection of @ vanishes because 6 is assumed to be horizontally

homogeneous.

Among the three state variables (density, temperature and pressure),
two should be predicted and the other diagnosed. Since the pressure is directly
responsible for the mass balance in the system through the pressure gradient
forces in the momentum equations, ARPS computes pressure. The pressure
equation is obtained by taking the material derivative of the equation of state
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and replacing the time derivative of density by velocity divergence using the
continuity equation:

(35u) Tz + (V) b + (W) T

0 ' .
a(Jsp):' +J30gwW

(6.2.26)

-pcs %(33U)+£7(33V)+ :Z(szc)

- »11d6 1 dE
*RPC 5w T E d

where E = 1+ 0.610y + Giiquid-+ice-

The terms on the right hand side of Eqg. (6.2.26) are the advection of
perturbation pressure p', the advection of base-state pressure p, the divergence
term and the diabatic terms. The hydrostatic relation was used to substitute for
the vertical gradient of p in the vertical p advection term. The divergence
term is usually the dominant term for most meteorological applications. The
diabatic terms are usually small, and are therefore neglected in ARPS. This
same approximation was made in Klemp and Wilhelmson (1978).

The conservation equations for the mixing ratios of water vapor qy,
cloud water qc, rainwater gy, cloud ice g, snow gs and hail g, are written in a
general form for avariable qy as

Q( * ) - u* aq(,u + u* % + * ai'u
gt P G Pl an ol (6.2.27)
30 Vi, du)

* 0{ +\/6qu+ quw

The right hand side terms are, in order, advection, sedimentation,
mixing and source terms. The source term &, represents all microphysical
processes, which are discussed in Sections 6.6 and 6.7. The sedimentation
term represents the falling of hydrometeors (rain, snow and hail) at their
respective terminal speed. Cloud droplets and ice cloud are generally assumed
to float with the air, therefore their flow-relative terminal velocity is zero.
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6.2.3. The discretized form of the governing equations
a) The model grid

The continuous equations described in the previous section are solved
numerically using finite difference methods on a rectangular computational
grid. The model variables are staggered on an Arakawa C-grid, with scalars
defined at the center of the grid boxes and the normal velocity components
defined on the corresponding box faces. The coordinate variables x, y and z
are also staggered and are defined at the u, v and w points, respectively. It

follows that we should evaluate J1= -dz/d¢ a half a grid interval below the u

point, Jo= -dz/dn ahaf agrid interval below the v point, and Jz= 92/d and VG
= |J3| a the scalar point. This spatial arrangement isillustrated in Figure 6.1.

|
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J, I
|
[
[
[
[

Tl

|

|

|

' |

i £ 1K,
[ J; S X .
I TuT22Tss
|

l

|

|

I %

Figure 6.1. A grid box depicting the staggering of the coordinate and dependent variables.

To represent the governing equations in finite difference form, we
define the following notations for averaging and differencing

a"*=[a(s+nd4sl2)+a(s—nas/2)] /2

o0, a=[a(s+nds/2)—a(s—nAs/2)]/(nAs) (6.2.28)
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where a is adependent variable and s is an independent variable indicating the
coordinate direction in which the operation takes place. nis an integer.

The numerical formulations of u*, v*, w* and W¢* defined in (6.2.18)
are:

R 3

u =p°u,

v =p*, (6.2.29)
w* :EZW,

4

We =p* We,

The contravariant vertical velocity W is also defined at the w point,
and is evaluated according to

e S — —_—
Wo=(u g+ v g +w )/ (G o). (6.2.30)

Clark (1977) found that a proper discretization of this equation is very
important in obtaining a correct kinetic energy budget in an anelastic model.

b) Numerical integration of governing equations

Since the model atmosphere described by the governing equations is
compressible, meteorologically unimportant acoustic waves are also supported
by the model. The presence of acoustic waves severely limits the time step
size of explicit timeintegration schemes. To improve the model efficiency, the
mode-splitting time integration technique presented in Klemp and Wilhelmson
(1978) is employed. This technique divides a big integration time step into a
number of computationally inexpensive small time steps and updates the
acoustically active terms every small time step while computing all the other
terms only once every big time step. Consequently, only the small time step
sizeislimited by the acoustic wave speed.

The large time-step integration uses a centered three-level (leapfrog)
time differencing scheme. With the exception of the advection terms, the
spatial difference terms are second-order accurate. The advection, at the
option of the user, can be either second- or fourth-order accurate. The large
time interval is limited by a stability condition based on advective and
(optionally) on gravity wave speeds. For the small time step integration, there
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are two options. The first is the forward-backward scheme that is fully
explicit. In this case, the momentum equations are first integrated one small
time step using a forward scheme (relative to the pressure gradient force
terms), then the pressure equation is integrated forward using a backward
scheme (relative to the divergence term which uses the updated velocities).
The other option is the Crank-Nicolson scheme which solves the w and p
equations implicitly in the vertical direction. The algorithm is absolutely
stable with respect to vertical acoustic waves. The small time step size is, in
this case, independent of the vertical grid spacing, therefore allowing a much
larger time step size when the horizontal to vertical grid aspect ratio is large.
An implicit step is more expensive than an explicit step due to the need to
solve atridiagonal system at each time step.

ARPS also provides an option for including the gravity wave modesin
the small time steps. This involves evaluating the thermal buoyancy and base
state potential temperature advection term on the small time step, and stepping

the 6 equation there as well.

The finite difference form of the u, v, w, p and 6 equations are:

Ef ur+AT _ UT _
AT

T

+f,, (6.2.31a)

5% (p - aiv) | + {3, p-aDiv )

T+AT T

—n -V _
P AT

+f,, (6.2.31h)

53 (P-aDiv) |+ 5Z{J2 o - aDiv f"}

ﬁ( Wr+Ar _ WT _
AT

+algow [+ 7070 a1 a|

2Z\T+AT

-8 {933 pIc|  +(1-P {ng p Cf}r

+ fl (6.2.31c)
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W THAT 13

LA

T+AT

—pc [ {(J3 U)+5z(J1U )+5 (3’ V)+5((JZVZI7)

(6.2.31d)
—pci|BIW T+ (1-P) JW}
gp*[ﬁ e @-p W]+t
6.r+Ar_6.r — 7ZT t
p*T :—[pWJZB + f,. (6.2.31¢)

The acoustically active terms include the pressure gradient force,
divergence damping, divergence term in the pressure equation, buoyancy due
to pressure perturbation (related to compressibility) and vertical pressure
advection. The terms responsible for internal gravity waves include the
buoyancy due to temperature perturbations and the vertical advection of the
base-state potential temperature. The terms that are not responsible for
acoustic or gravity wave modes are contained in ft.

For each big time step, the u, v, w, p' and 6' equations are integrated
forward from t-At and t+ At during ng number of small time steps, where At is
the big time step size. The small time step size, At, satisfies equation 2At =
NsAT . The superscriptst and 7in (6.2.31) indicate the time level at which the
terms are evaluated. The terms with superscript 7 or 1+ AT are evaluated every

small time step and those with superscript t are evaluated once every big time
step and kept fixed throughout the small steps.

In Egs. (6.2.31c) and (6.2.31d), time averaging is performed on several
terms with 8 as the weighting coefficient. For the vertically explicit option, 8
IS set to zero in the w equation and to unity in the p equation. In this case, the
u, v and w equations are stepped forward one time step, then the p equation is
integrated forward using the updated u, v and w. Relative to the divergence
term, the time integration for pressure is backward. For 8 # O, the time
integration for the w and p equations becomes implicit. For 8 = 0.5, the
averaging is centered in time and equivalent to that used by Klemp and
Wilhelmson (1978).
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Skamarock and Klemp (1993) showed that the mode-splitting scheme
used here is unstable to certain acoustic waves due to the interaction between
the advection and propagation of these waves. Durran and Klemp (1983)
found that a value of 3 between 0.5 and 1.0 (effectively biasing the scheme
towards backward-in-time) can damp certain unstable acoustic modes in a
compressible model. lkawa (1988) showed that, for 8 = 1, the scheme is
neutral to horizontally propagating acoustic waves but severely damps the
vertical modes. In general, a value of 0.6 is sufficient to control unstable
acoustic modes.

Divergence damping is another effective way of controlling the
unstable modes, and is the only method available for the explicit option.
Finally, with the unstable modes effectively under control, the vertically
implicit scheme is absolutely stable to vertically propagating acoustic waves.
The solution procedure for the implicit option is given in the next subsection.

It should be noted that, in (6.2.31), we include the buoyancy due to
pressure perturbation [gp /(pc?)] and the vertical base-state pressure
advection [ —pgw] inside the small time steps. These two terms are found to
be responsible for certain high frequency oscillations, and must be treated in
this manner.

c) Terms not related to acoustic or gravity waves

The remaining non-acoustic and non-gravity wave terms in the
governing equations are:

t

5 ¢ ~ —z¢
fl= —ADWU'+| prfv" —p fw® | +3,D7%, (6.2.32a)
- t
f;:—ADwf—[pkfuf”] +J,D %, (6.2.32b)
Tt —— |t
{=—ADVW'+| B, +[ o fu‘“} +3,D4, (6.2.32¢)
»=—ADVP/, (6.2.32d)
f,=—ADVT'+J,D, % + 1, Sy, (6.2.32¢)
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where Bg, the water substance contribution to buoyancy, is defined by
Eqg.(6.2.36) and ADVU, ADVV, ADVW, ADVP and ADVT are the advection
terms for u, v, w, 6 and p', respectively. The discrete formulations for them
depend on the choice of advection schemes. ARPS 4.0 has options for second
and fourth order centered differencing. The second-order advection terms are
given by

I Seat S spet By LI
ADVU = u-'d,u+ Vv gu +W*au

- — =
ADW = u"g.v + v 8"+ W gy

— f = —7 ¢
ADVW = u=“gw+ v gw'+ W gw

— — = ~ <
ADVP=Fugp +Zve p" + W gp’,

- — " e
ADVT=r 58°+Vv 38" + W* g0'" . (6.2.33)
The fourth-order terms can be expressed as a weighted average of two terms:

ie

— — —Z
ADVU = ;1 l u*‘(dZ U+ v 5,7u'7+ W™ 5u

o L, —g X
—é K u v 52,,u2”+\/\/°* 3u }
s —
ADWV = 4 u*'765v+v*"5v’7+\/\/°*’75v
3 0 7
1| =peo 2 =35 2n V\?n( %
L e T W s |
— ¢ = . ¢
ADVW:;1 u‘a W+ v g W+ W aw w

1| =5 % o s oo ook X
—3| UTGwW VT W + W gw
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-4
ADVP = 3

— — ——
J3€U5gp'€+~]3r]V5r,p'n "'~]3ZV\/C o p w

. = I2’7 fzg
3 U @gp +J30V 62/7p +Jazvvc @gp L

(6.2.34)

= E = U] "4 «
a0+ v, 07 + W g e |,

_1
3

It can be shown (Xue and Lin, 1991, unpublished manuscript) that
these terms are fourth order for constant flows. When the flow is not constant,
the truncation error is proportional to the gradient in the velocity field, and the
error is smaller than that of the fourth order scheme presented by Wilhelmson
and Chen (1983).

The above advection terms are written in advective form. Xue and Lin
(1991) showed that this form is numerically equivalent to the flux form
consisting of a flux term plus an anelastic correction that is often used by
other modelers (e.g., Wilhelmson and Chen, 1983). For example, consider the
second order advection for potential temperature. We have

4
a8 +v-50" + W* 38"
= 5(u 0 +5(v' 8™ +5(W*8") +8'Div* (6.2.35)

In an anelastic system, Div* = 0 and thus the advection can be written
in a conservative flux form. In a compressible system, Div* is not completely
negligible but should remain small (it is actually damped by the divergence
damping). Neglecting the effect of compressibility, both the second order and
fourth order advection formulations given above are quadratically
conservative (Xue and Lin, 1991; Arakawaand Lamb, 1977).

Term Bq in Eq.(6.2.32¢) is the contribution to the buoyancy by water
substance and is given by

q\'/ _ q\'/ + qliquid+ice
£+ 0y 1+q,

B,=g (6.2.36)
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The advection, Coriolis force and By are evaluated at the current time
level of the leapfrog integration. The turbulence and computational mixing
terms are, however, evaluated, due to stability requirement, at the previous
timelevel.

It should also be noted that the discretized Coriolis terms satisfy the
conservation of energy implied by their continuous form.

The equations for water substances are solved completely on the big
time step, and the numerical formulation is given in ageneral form for qy as

t+At_ t—4t _ -4
o qwmqw =—ADVQ' +JD, *+J S, (6.2.37)

where the advection term ADVQ is given by the second order advection
scheme

ADVQ =u* 4, + V* 5,0, +W* 54, ‘ (6.2.38)

or by the fourth order advection scheme

st R 4
ADVQ =§[ U 3a, + V90, +W* 5g, ] (6.2.39)

= 26 = n ol 2
_% wiag, +Vv' a0, +W 3, w

Again, the advection is calculated at the center time level (t) of the leapfrog
time step and the mixing terms at the past time level (t-At).

c) The vertically implicit pressure and w solver

When the time averaging coefficient 3 is not zero, Egs. (6.2.31c) and
(6.2.31d) become simultaneous equations for w and p' at future time step.
These two equations have to be solved together.

After regrouping the unknown terms, the pressure equation (6.2.31d)
can be rewritten as
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™+ AT
p T =pT+F +Aﬂ[gp*w pcdw} (6.2.40)
3
where
At
Fo=3,[ o+ (=B g i~ pc2opw ]
A k[ 3 u) + 6 B + 3y (3T + 5 I [P
(6.2.41)

On the right hand side of (6.2.40), only the third term involving w at T+AT is
unknown.

Eliminating p' ™47 in w equation (6.2.31c) using (6.2.40) yields

+ AT

2
w ' =w +F, ATZEZ X P PS W
o J; J;
. AT (6.2.42)
A -
pffg Cz _p 5ZWZ
where the known terms on the right hand side are grouped into F,, as
AT r o' i
R = —z{fN ) (p"—aDiv*)+ gp*( g~ pz)

(6.2.43)

_B(QJB Yy C:)Z—:Bész/

Note that ARPS has the option of calculating the thermal buoyancy term on
the large time step.

Eq. (6.2.42) now has only one unknown, w47  and the spatial
averaging and differencing are all performed in the vertical direction. This
equation is discretized using the second order scheme. After considerable
algebra, we arrive at the following equation:

Aka_l + Bka + Ck Wk+1 = Dk , (6.2.44)

where
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A= (- NgCsZer + PrJdsker) (Mer + L),

Bk= 1+ N[ (My+ Lg) % - (M1 - Li-1) Cic1]
+ P [ (Mi+ Lg) J3k+ (M1 - Lier) J3ken

Ck = (NkCs% + Py Jsk) (Mg - L),

Dk = Fwk+ Wi, (6.2.45)
: AT AT
with p=27P9 N-ATF 9P P
20 A 2 3,0 AL X

Equation (6.2.44) forms a linear tridiagonal equation system, and can
be solved using a standard tridiagonal solver given appropriate boundary
conditions. The same equation system also appears in the Poisson equation
solver using alternating direction implicit (ADI) method described in Section
9.3. The procedure described there is used to solve (6.2.44).

In ARPS, only non-penetrative top and boundary conditions are
supported by the vertically implicit solver. In this case, w at the top boundary
(Wnz1) IS set to zero, and w at the lower boundary (w») is calculated from the
horizontal velocities and the terrain height, ensuring that the flow at the lower
boundary follows the terrain. The top and bottom boundary conditions are
discussed further in Section 6.5.

After w47 s solved from (6.2.44), it is substituted into Eqg. (6.2.40) to
yield pressure p' 747,

6.3. Subgrid Scale Turbulence Closure
6.3.1. Introduction

Turbulence parameterization, the closure linking the resolved scales
and the unresolved subgrid-scale (SGS), is critical to the successful simulation
of many flows. This section discusses three available options in ARPS for
parameterizing the subgrid scale turbulence - the Smagorisky, 1.5 order
turbulent kinetic energy (TKE) and Germano dynamic subgrid-scale (SGS)
closure schemes. The Smagorinsky scheme is a special case of the TKE
equation. The Germano dynamic SGS closure converts previously prescribed
SGS model coefficients to self-determined parameters that vary with time and
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space. Inversion 4.0 of ARPS, the Germano scheme is only available for the
flat-terrain formul ation.

6.3.2. The turbulent mixing formulations

The turbulent mixing terms in the governing equations (6.2.19) —
(6.2.21), (6.2.25) and (6.2.27) are described in detail in this section. For the
momentum equations, these terms are expressed in terms of the Reynolds
stress tensor Tjj, as

01, 0T, 0Ty
@D”_\/a( x oy "oz

:;(33r11)+£7(\]3r12) 35(T13+J Ty, +J le)

0T,y 0Ty 0Ty
@DV—\/E( x oy "oz

5 (6.3.1)

:M(Jstl)J’:n(Jstz) aZ(Tzs*‘J Ty +J Tzz)

0Ty 0Ty O0Tag
\/EDW_“/E( x oy "5z
0 0
:&(33%1)*%(33%2) aZ(Tss"‘J Ty +J Tsz),

The stress tensor is parameterized in terms of the resolvable scale
quantities:
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T11:PKmh(D11'§ Div),
T12=PKm D12,
T13= P Ky D13,
1= PKm D12,

- 2 .
T?_z:PKmh(Dzz'ngV),

- 6.3.2
T3= P Ky Dos, (6:32)

T3 = PKpn D13,

T3 = P K D3,

- 2 .
T33= PKiph (D33~ 3 Div).

Here Knh and Ky, are horizontal and vertical turbulent mixing coefficients for
momentum. We distinguish the horizontal value from the vertical to make
provision for considering anisotropic turbulence. Dj; is the deformation
tensor, and Div, the velocity divergence, isdefined as

. _ 1 [a(/Gu) _ a(GV) , ayGW)
DIV_\/E oE + on + s . (6.3.3)

With respect to the stress tensor, the divergence terms are small and therefore
are neglected in ARPS.
The deformation tensor, D in (6.3.2), isgiven by

CLou_ 2 |a@gu) 0@
Dll_z&_\/é a{ + aZ
o, 2 |30 )
2770y /g | on o

2

0w ow
~0u ov_ 1|0 0 0
D, dy + Foia Tg —an(Jgu) + 65(J3V) + 7o (Ju+JVv) ’

CAPS - ARPS Version 4.0 134



Chapter 6: Theoretical Formulation

o ow_ 1o, 0
D13—E+&—\/6 55(J3W)+ 6Z(U+J1W),
1| ’

v aw_ 1| 9 K}
Do3= E+07y_\/6 5’7(J3W)+ 6Z(V+J2W) .

The turbulent mixing for potential temperature 6 and water substances
can be written in ageneral form for ascalar ¢:

VG D(p:\/6

6x+0y+az

OH, oH, aHg)

5 5 5 (6.3.5)
:FQ((JsHD + %(Jst) + FZ (Hs +JH +, Hz)

where Hy, H, and Hjz are horizontal and vertical turbulent fluxes of @in the x,
y and z directions respectively. These fluxes are defined by

- 0 - 1|0 0
Hi=pKyn J:pKHh@lM(JWHM(Jl@

op 1

Hy = p Ky, oy P Kun NS (6.36)

4] 0
an (J3p) + 67((‘]2('0)

- 0p - 1 0¢
H3=p Ky E:PKHV ﬁ a7

where Ky and Ky are respectively horizontal and vertical mixing coefficients
for @ In general, the mixing coefficients are taken to be the same for heat,

moisture, water or ice quantities. Ky equals K/Pr where Pr is the turbulent
Prandtl number and is usually a constant having a value between 1/3 and 1.

The key to a turbulence closure scheme is the determination of the
mixing coefficients. The Smagorinsky (1963) first-order closure scheme and
the 1.5 order turbulent kinetic energy (TKE) based closure scheme are
discussed in the following subsections. First, we discuss the spatial
discretization of the formulations presented above.

As shown in Figure 6.1, variables 111, T2p, T33, D11, D22, D33, Km and
Ky are defined at the scalar point at the grid box center, Hy at the u point, H»
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at the v point, and Hs at the w point. 713, 731 and D13 are defined at the same

point as Ji. To3, T3» and D3 are defined at the same point as J,. 712, T21 and
D1, are defined half a grid interval to the right of v. Given this grid
arrangement, the discretization of the turbulence terms are straightforward.

According to Eq. (6.3.4.),

du 2 — —=7¢
D11:26X=~/6l5g(‘]3{u)+55( ~]1UZ )]
ov 2 - 7N
DZZZZW:@lén(J3"v)+ 5, (I ) ]
ow_ 2
=2 _ 6.3.7
D33 2 oz \/65ZW ( )
1 7 —¢ 0 =& n 70L&
D= —5| 9,(J37u) +0s(J3 V) + O,(Jpu "+ V")
VG|
1 | — =i{
Diz= —¢| %(Jzgw)+ & U+ w )]
\/656, 3 (4
Doy= — | & (TfW) + 8,(v+] an)].
23 — 3 2
VG ¢

The stresses 7j; given in (6.3.2) are then obtained using Dj; with

appropriate spatial averagesof pK,,
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711 = P K D11,
715= 0 Kmn"' D1z,
T13= 0 Kmy'* Dig,
T51= P K Diz,
=P K D2,

Tp3= P K™ Dag, (6:38)

=&
T3 = PKmn D1z,
=
T3 = PKyy Dos,

T33= PKpy Das .

where the velocity divergence, Div in 111, T22 and 133, is calculated according
to (6.3.2) at the scalar point

Div=] 65{\/765u}+ 5,7{\/76%} + 55{\/76ZVVC}]/\/6' (6.3.9)

The discretized form of the turbulent fluxes for scalarsis

3

— 7
Hy=| 2 @““ 6050 + 5,0,
PKun)
H,= ﬁh [5ﬂ (33@+5((32¢“)], (6.3.10)
= Z
Kipy )
Hy= P\/gH 55(5

Assuming that the mixing coefficient for momentum, K, can be
determined and the mixing coefficient for temperature and water, Ky, is equal
to Kny/Pr, then the turbulent mixing termsin (6.3.1) and (6.3.5) can be readily

calculated from 7j; and H; from (6.3.8) and (6.3.10):
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VG D =5 33T11+5f;(33{nT12)+55(T13+31T11{Z+325T12w)
o)

VG Dy= 5( 35" T21)+ n(33T22)+5(T23+31 [N +J T22 )

VG D= 55(‘]*35( 131) 5(J3 T32)+5(T33+J1 131 +32 )(6311)

and

VG Dy= 55(53{ H1)+ @(I’ﬂn H2)+ 55( Ha+Hy 3y +HY 3 ) (6.3.12)

6.3.3. Smagorinsky first-order closure

The key to a turbulence closure scheme is the determination of the
mixing coefficients. The modified Smagorinsky scheme (Smagorinsky, 1963;
Lilly, 1962) defines Kiyh = Ky = Kpas

K, = (k 4)2[ max( |Def |2-NZPr,0)] M2 (6.3.13)

where k is an empirical constant and takes a value of 0.21 after Deardorff
(1972a). A isthe ameasure of the grid scale. On amodel grid with similar grid
spacing in al three directions, the turbulence is nearly isotropic,

A= (Ox Ay Az2)V3, (6.3.14)

When the grid aspect ratio (Ax / Az) ison the order of 10 or larger, asis often
the case when high vertical resolution is required in the boundary layer, K as
determined according to (6.3.13) and (6.3.14) can become too large, resulting
in excessive vertical mixing. Thisartificially strong vertical mixing isfound to
destroy the base state environment when the environment is not stable enough
to suppress the turbulence. The larger vertical coefficient also imposes a
severe computational stability constraint on the large time step size. Thisissue
is addressed by using different length scales for the horizontal and vertical
directions, so that

Koy = (K 4)% [ max( |Def |>- N%Pr,0) ] vz (6.3.15)

Ko = (k A)2[ max( [Def [2-NZPr, 0)] 2

where
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A =(Mxdy)'? and A, = Az (6.3.16)

We refer to this case as an anisotropic turbulence case. A similar approach is
taken by Tripoli and Cotton (1982).

The magnitude of deformation |Def| in (6.3.13) is given by
|Def| # = ; (D + D3, + D3;) + DF, + Diz + D3; - 2 Div.  (6.3.17)

In (6.3.13) and (6.3.15), N2 is the Brunt-V disdla frequency

i Lne for <
NZ _ JE a Z qV qVS

(6.3.18)

g 1+ Lq,/(RT) a|n9+ L OOy i oqy for q, > q
/6 | T Caniarry | 9 GT o o | 2 0

where qys is the saturation mixing ratio and gy, the total water mixing ratio. L
the latent heat of vaporization, R the gas constant for dry air, R, the gas
constant for water vapor and C, the specific heat for dry air at constant
pressure. When the air becomes saturated, the moist static stability replaces
the dry stability, and the formula for the moist static stability in (6.3.15)
follows Durran and Klemp (1982). The contribution of ice processes to
(6.3.18) are neglected.

The saturation mixing ratio gysis calculated using Teten’s formula

380 T-273.16
Os= " exp(a, T-ibw) (6.3.19)

where

ay=17.27and by, =355for T>273.16 K
(6.3.20)
ay=21.875and by =75for T< 273.16 K.

The cell-centered deformation in (6.3.17) is calculated according to
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Dol = (0F, D3 + D)+ 01" 015 [+ 0

(6.3.22)
and the cell-centered Brunt-Vaisdla frequency N is calculated according to

[ —

2% &  for g, <Oy

2 Gl

N%=

1+Lay/(RT) 1
G

P T R
1+ L2%/(C,R,TH 95{6{+CpT % s ) O (6:322)

&’

for qV qVS

K can then be readily calculated from (6.3.15), and it is done at the scalar
point. The mixing coefficient for temperature and water is Ky = K /Pr,
where Pr isthe Prandtl number.

6.3.4. 1.5-order turbulent kinetic energy-based closure scheme

With this scheme, the turbulent mixing coefficient is related to the
turbulent kinetic energy E (=u'2 +v'2+w'2/ 2) instead of the deformation and

static stability as in the Smagorinsky closure scheme. In this case, an

additional prognostic equation for the turbulent kinetic energy, E, is solved,
whichis

Op*E _ 0E , s OE o0E
5t = (u 6E+V + W GZ)+C

¥ p*(Km Def 2—§EDiv) —pr E

(6.3.23)
d

(JSHl) a (‘JSHZ) T 55 Z

( +JH, + J2H2)

The terms on the right hand side are, respectively, the advection,
potential-kinetic energy conversion, shear production, dissipation and
diffusion of turbulent kinetic energy. The formulation of the diffusion term, is
similar to those for heat and moisture. In (6.3.23), the turbulent flux
components are:
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OE

o _PKn | @ d
Hy=0Km x~ Jg 675(‘]3E)+675(J1E)

- E _ PKm | o 0
Ho= oK., — = — (JE)+ = (J-E 6.3.24
mehay \/6 60(3)65(2) ( )
__. 0E_ PKy 0E
H3=p Ky 9z ﬁ Fle
The potential-kinetic energy conversion term C is given by
.06, . 00
-9 Ap KHVTZ -p KHvanI for qu gsor qc> 0
C= (6.3.25)
. 00 0q,
-gp Ky, éaz+0.61ac} for q,<qg.orq.=0
in which Aisdefined as
) 1+ 1.6;9_qu
A= = 5 (6.3.26)
@ 1. eLq,
C,RT*

with £€=0.622; qisis the sum of all vapor, liquid and solid water substances,
and 6 isthe equivalent potential temperature.

In the dissipation term, coefficient C¢ has the value

3.9 atlowestlevel,
C. = (6.3.27)
\ 0.93 otherwise.

The mixing coefficients Kmn and Kin are functions of E and the length
scales.

Kmh = 0.1 E¥21,, and Ky = 0.1 E22], (6.3.28)
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For a grid distribution with an aspect ratio on the order of unity, the horizontal
length scale I, and the vertical length scale |y are the same, and are given by
(Deardorff, 1980)

/ As for unstable or neutral case,

==l :\ min (As, 1) for stable case. (6:3.29)

where As = (Ax AyAz)YV3 and |5 is defined as

-1/2

D

|, = 0.76E"'?

Nt

D

For agrid distribution with very large aspect ratio,
[, = Ay

_ / As, for an unstable or neutral case,

and I, _\ min (As, |) for astablecase. (6.3.30)

where As, = (Ax Ay)Y2and As, = Az

The turbulent Prandtl number (Pr = Kn/Kp ) isgiven by

pr=rm-_1 (6.3.31)

20,
1+ e

therefore Ky becomes available once Ky, is known. Note that we plan to add
another option of computing K,y and Ky according to Schumann (1991) in the
near future.

In (6.3.23), the advection and diffusion terms are similar to those in the
other scalar equations (e.g., EQ.(6.3.26)), they can be calculated in a similar
way. It is worth noting that if E is zero everywhere at a given time, E will
remain zero ever after according to (6.3.23). To remedy this, we check the
local Richardson number Ri = N?/Def*. If it falls below a critical
Richardson number, turbulence activity is expected and we impose a lower

l[imitonE, i.e,
Ko = max(0.1E",, aAsg),
(6.3.32)
K = max(0.1E",, ans]).
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where a isasmall number (e.g., a=10°).

6.3.5. Dynamic eddy viscosity model - Ger mano scheme

In the widely used Smagorinsky closure method discussed in Section
6.3.3, an empirical constant, Cgis employed. However, the considerable

variation of Cg evident in real flows, limits the utility of this closure method.

In addition, the computed eddy viscosity does not vanish in laminar flow or at
solid boundaries, as is observed.

In ARPS, we can use an optional dynamic model to convert previously
prescribed SGS model coefficients to self-determined parameters that vary
with time and space (Germano et al., 1991; Wong, 1992; Wong and Lilly,
1994; Wong, 1994). Within a simulation, the SGS representation is locally
and dynamically adjusted to match the statistical structure of the smallest
resolvable eddies.

The dynamic SGS model (Wong and Lilly, 1994) expresses the total
SGSstress tensor, 7 (= uU; — G0, ), and temperature flux, T4 (= 6u — 6 y)

= Skk) (6.3.33)
=-v, 22, (6.3.34)

where §; = (du; /9 x; + du_j/c?xi)/z is the resolved strain rate tensor. Here

the overbar represents an averaging on the grid scale, i.e., the smallest
resolved scale. According to Kolmogorov scaling, the eddy viscosity v, and

eddy diffusivity vg can be defined as

v, = CA%3, (6.3.35)
C tas3

vy = — Y3 6.3.36

6= 5 ( )

where the model coefficient, C, and the eddy Prandtl number, Pr, are
assumed to be independent of the grid-filter width, A (= (AxAx,A%,)"°),
with x; (i =1,2,3) being the grid spacing in the ith direction. The model
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coefficients, C and Pr, are determined by using the dynamic SGS closure
developed by Germano et al. (1991) and modified by Lilly (1992).

The main premise behind dynamic SGS modeling is the use of
information at two different resolved scales to evaluate the model coefficients.
We therefore introduce a second spatial filter, with a larger filter width than
the grid filter, called the "test filter". This filter generates a second set of
resolvable-scale fields (denoted by 7). The test-filtered flow quantities are
obtained by volume-averaging the grid-scale variables over 27 grid cells,
within atest-filtering volume, using a stencil of 3 grid points in each direction.
We also choose the test-filter scale A = 24 which is consistent with other 3-D
filtering models.

By direct analogy to (6.3.36), the subtest-scale (STS) stresstensor T; is

T (s Gu, —G,0;) approximated by

Ty =8 T /3= -2vr (§ — 9 S« /3) (6.3.37)

where éj = (90, /0x; + 90, [9%) /2 and vp (=CA*3) is the STS eddy

— an

viscosity. Similarly, the STS temperature flux Ty (E o, — 6Ui) isgiven by

To = - Ve%' (6.3.38)

where v, (zCA‘“‘/Pr) is the STS eddy diffusivity. The fluxes,

Tj, TgT; and T4, are unknown guantities because u u;, 6y, ga, and 8u
contain information within the unresolved scale. However, subtracting the
test-scale average of 7;; and 74 from T;; and Tg;, respectively, leadsto

1]
|
1>

o
e

Lij = Tij -y = Ay~

G, (6.3.39)

and
Ry,=T,—T4 = 6q —6U . (6.3.40)

The test window elements L;; and Ry are known quantities because the right
hand side of (6.3.39) and (6.3.40) can be directly evaluated from the resolved
velocity and temperature fields. According to (6.3.36), (6.3.35), (6.3.37), and
(6.3.39),
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L, - 6,L,/3=2CM,, (6.3.41)

with My =A™ - A%)§ —5ij§Kk/3). Since L =Ly,

six independent equations with one unknown, C. As (6.3.41) is an
overdetermined system, it is appropriate to use a least squares method to
determine C:

(6.3.41) represents

<(Lii -9, ka/3)(§i -9,

20N43C = (6.3.42)

where ( ) indicates local volume averaging, and the summation convention is
in effect.

Similarly,

00
A_4/3Q ~ <RGI an >

" Al (2T

One can divide (6.3.42) by (6.3.43) to obtain the eddy Prandtl number Pr.

(6.3.43)

To close the system for compressible fluids, we need to compute 7,y
in (6.3.36). By analogy to the expression introduced by Y oshizawa (1984) ,
we need to compute Tyk:

T =2C,A%3S. (6.3.44)

where S =(25,5,%?) is ameasurement of the resolved strain rate tensor §;.
Making use of the trace of (6.3.39) with the model of (6.3.44) for T, and
T\« » We obtain

ka .
~ 1% Q
([A/A] - 1) (8)
According to (6.3.39), Ly in (6.3.45) is non-negative since the average of the

square of a quantity is never less than the square of its average. It follows that
C, 2 0 and thus arealizability condition, 7, = 0, is satisfied.

2h" C, =

(6.3.45)
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Egs. (6.3.36)-(6.3.36), and (6.3.42)-(6.3.45) form a closed SGS system
with the filter width ratio A/Z being the only input parameter. The

denominator of (6.3.42) can vanish only if each component of Sj vanishes

separately. In that case, the numerator also vanishes. A similar conclusion
applies to (6.3.43). Moreover, at a solid boundary or for laminar flow, Lj;

vanishes and according to (6.3.42)-(6.3.45), al the SGS model coefficients
also vanish.

6.4. Computational Mixing / Numerical Smoothing

The subgrid scale mixing provides smoothing related to turbulent pro-
cesses only in the region where K, > 0. In stable regions where Ky, is zero,
there is no turbulent mixing. A small amount of background (computational)
mixing is desirable to discourage the growth of nonlinear instabilities and to
suppress small scale computational noise. This can be achieved by either
adding a constant to the coefficient of the physical (subgrid scale turbulence)
mixing, or by introducing an additional mixing / smoothing term on the right
hand side of the conservation equations (except for pressure). We refer to the
latter as computational mixing.

To ensure computational stability, all mixing / damping / diffusion
terms are evaluated at the previous time level of the time integration. This
makes the scheme forward in time with respect to the mixing terms. It is
important to note that the time integration of the terms is conditionally stable.
Under certain circumstances, the constraint on the time step size imposed by
these terms can be more severe that by other processes, such as gravity wave
propagation and advection.

In the following subsections, several optional computational mixing
formulations as well as upper level Rayleigh damping formulations are
discussed.

6.4.1. Constant background mixing in physical space

This type of mixing is included by adding a user-specified constant,
Kma, to the mixing coefficient, Ky, that is calculated in the previous section.
The total mixing on scalars will be Ky + Kyg = (Km + Kyg)/Pr. Because this
mixing operates on the total fields, it tends to diffuse the environmental and
perturbation fields' shear and stratification. This property may not be desirable
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in many cases. The choice of the background mixing coefficient follows a
guideline similar to that for the second-order computational mixing.

6.4.2. Numerical smoothing in the computational space

This type of computational smoothing is designed to remove the small
scale (mainly grid scale) noise of computational origin (e.g., advection-
induced overshoots and undershoots, energy cascade towards small scales due
to nonlinear instability). It is therefore designed to operate along computa-
tional grid lines (¢, n and ) instead of the physical coordinate lines (X, y and
Z). To avoid the unwanted effect of smoothing the base-state fields (thus
destroying the environmental stratification), the smoothing is formulated to
operate on the perturbations (u’, v', w, ' and q'y) only. Therefore, this
smoothing tends to relax the total fields towards the base-state values.
Because of its non-physical origin, the computational smoothing should be as
small as possible in order to avoid affecting the physical solution.

ARPS offers second- and fourth-order computational mixing. Fourth
order mixing is preferred because it damps out short wavelength noise more
selectively than the second order mixing. Theoretically, the higher the order of
smoothing, the more strongly the short wavelengths are damped. In practice,
however, high order smoothing is more difficult to implement, especially near
the boundaries.

With the total mixing divided into separate parts, the conservation
equations may be written like this:

a(gtq’) = /G (Dyg+Dgp+Dgg) + .. (6.4.0)

where D represents the subgrid scale turbulent mixing, Dy the second
and/or fourth order computational mixing and D 43 the upper-level Rayleigh

type damping. Here gisone of u, v, w, 8, or one of the water or ice variables.

a) Second order computational mixing

In ARPS, the second order mixing has the following form:
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9*(pg)

0*(pg) , 0°(p9)
2 azz

98> an

VG D =Ky +Kyz

(6.4.2)

where ¢ = ¢— @ is the perturbation of ¢ from its base-state value. Ky, and
Kyv2 are the horizontal and vertical mixing coefficients, respectively. Equation
(6.4.2) contains conservative terms which operate along the computational
rather than the physical (Cartesian) grid lines.

To discretize (6.4.2) in the finite difference form, it is convenient to
define afinite difference operator

2, _ |+1_2(A+(ﬂ—l
52q= =4 (6.4.3)

where s denotes one of the independent variables &, n or {. The finite-
differenced formulations of Eq. (6.4.2) for u, v, w and scalar Sbecome

VG Dy =Ko [55(0%') + 53(5%')

+ K2 [5(2(:55”')]

VG Dy =Kinp| (V) + 5V) |+ Ko H5V)

VG Dup=Kiip | 0'W) + (W) + K.o| (W) (6.4.9

VG D = Ky | §(55) + (6S)| + Ko | E(0S)].

These terms are evaluated at the interior points of the model domain
without application of boundary conditions. The horizontal mixing coefficien,t

Khz , equals a,, A7 /At where a,,, isanon-dimensional coefficient; Ay isthe
horizontal grid scale taken as (Ax4y)Y2. Similarly, K, = a, A2 /At , where a,,
is a non-dimensional coefficient and A, = A{. For computational stability,
a,, and a, must be less than or equal to 1/8. The dimensional (1/s) ratios
Kz /A7 and Ky, /12 are specified by the user in theinput file.
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b) Fourth order computational mixing

The fourth order computational mixing terms have the form

a*(og)

0'(py) , 0"(p9)
o’

o8 an’*

VG Dyp=-Kpy —Kva (6.4.5)

The finite differenced formulations for u, v, w and any scalar, S,
(representing 6 and the water and ice categories) are

@DUZ:-KM{Q?[ Fo'u)|+ & 63(p“u')]}—KV46?[ Z ()|,

\/aszz'Km{Qg[5?(,0"\/)]*'53[53(PUV)]}—KV4@2[552(P"V' ]

@Dwz:-Km{cz?[ Fow)| + 63[63(p<w)]}—KV46?[6§(p<w)] ,
J/G Dg=- KH4{6§[ Hps)|+ &| f(pS)]}—Kvm?[ Z(pS)| - (648)

The fourth-order terms given above cannot be directly evaluated at the
first grid point inside the boundary. Therefore, either a second order substitute
or prespecified boundary condition must be applied. The former may
introduce erroneous sources or sinks at the transition between the two
schemes. In ARPS, we overcome this difficulty by making additional

assumptions for the intermediate terms such as 5?(,5”(u’) . In this way, the

mixing terms can be evaluated up to the first grid point inside the boundary,
and the formulation retains its conservative property. In the case of symmetric
or periodic boundary conditions, however, no artificial assumptions are
needed.

The fourth-order mixing terms given in (6.4.6) are computed in two
steps. First, the terms in the squared brackets are evaluated at the interior grid
points of the model domain, and their values at the boundaries are set based on
additional assumptions. The mixing terms are then calculated from these
intermediate terms, up to the first grid point inside the boundaries. Splitting
the calculations into two steps aso results in modular calculations, where each
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path through the operator involves only three grid points in each direction.
This approach follows the massively parallel implementation of the code.

Denoting
D2XIU = &p'u), D2ETAU = 5?,(,3%’),
D2XIV = &(o'V), D2ETAV = &(o'V),
- . (6.4.7)
D2XIW = &(o'w), D2ETAW = &(o'W),
D2XIS = &(pS), D2ETAS = &(pS),

we set the boundary conditions for the second derivatives for the symmetric
(wall) boundaries as

D2XIU(1,j,k)
D2XIU(nx,j,K)
D2ETAU(i,1,k)
D2ETAU(i,ny-1,k)

- D2XI1U(3,},k) for al j and k;
- D2XIU(nx-2,j,K) foraljandk;
D2ETAU(I,2,K) for al i and k;
D2ETAU(i,ny-2,k)  for al i and k.

D2XIV(L,j k)
D2XIV(nx-1,],K)
D2ETAV(i,1,k)
D2ETAV(i,ny,K)

D2X1V(2,j,K) for al j and k;
D2XIV(nx-2,j,k) for al j and k;

- D2ETAV(i,3,K) foraliandk;

- D2ETAV(i,ny-2,)k)  for al i and k. (6.4.8)

D2XIW(L,j,K)
D2XIW(1x-1,],K)
D2ETAW(i, 1K)
D2ETAW(i,ny-1,K)

D2XIW(2,},K) foraljandk;
D2XIW(nx-2,j,K) for al j and k;
D2ETAWi,2,k) foraliandk;
D2ETAW(i,ny-2,k)  for al i and k,

and for the periodic boundaries:

D2X1U(1,,K) = D2XIU(nx-2,j,k) for al j and k;
D2XI1U(nx,j,K) = D2XIU(3,j,K) for al j and k;
D2ETAU(i,1,k) = D2ETAU(i,ny-2k) foraliandk;
D2ETAU(i,ny-1,k) = D2ETAU(I,2,K) foraliandk;

D2XIV(1,j,K) = D2XIV(nx-2,j,K) foraljandk;
D2XI1V(nx-1,j,K) = D2XI1V(2,},K) for al j and k;
D2ETAV(i,1,k) = D2ETAV(i,ny-2k)  fordliandk;
D2ETAV(i,ny,k) = D2ETAV(i,3,k) for al i and k; (6.4.9

D2XIW(L,j,K)
D2XIW(nx-1,j,k)

D2XIW(nx-2,j,K) for al j and k;
D2XIW(2,},K) foraljandk;
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D2ETAW(i, 1K)
D2ETAW(i,ny-1,K)

D2ETAW(i,ny-2,k)  for al i and k;
D2ETAW(i,2,K) for all i and k.

The conditions on the lateral boundaries for a scalar S are exactly the
same as those for w.

For zero gradient and open boundary conditions, we simply set the
normal gradient of the second order termsto zero at the boundaries, i.e.

D2XI1U(1,},K) = D2XIU(2,,k) for al j and k;
D2XI1U(nx,j,K) = D2XIU(nx-1,j,k) for al j and k;
D2ETAU(i,1,K) = D2ETAU(i,2,K) foraliandk;

D2ETAU(i,ny-1,k) D2ETAU(i,ny-2,k)  for al i and k;

D2XI1V(1,j,K) = D2XIV(2,,K) foral j and k;
D2XIV(nx-1,j,k) = D2XIV(nx-2,j,K) foraljandk;
D2ETAV(i,1,k) = D2ETAV(i,2,K) forall i and k;

D2ETAV(i,ny,K) D2ETAV(i,ny-1k)  foraliandk; (6.4.10)
D2XIW(L,j,K)

D2XIW(nx-1,j,K)
D2ETAW(,1,k)
D2ETAW(i,ny-1,K)

D2XIW(2,j,K) for dl j and k;
D2XIW(nx-2,j,K) for al j and k;
D2ETAWi,2,K) foraliandk;
D2ETAW(i,ny-2,k)  for al i and k;

D2X151,j,k) = D2X192,j,k) for al j and k;
D2XI1S(nx-1,j,k) = D2XISnx-2,j,K) for al j and k;
D2ETAS(i,1,k) = D2ETASi,2,K) foraliandk;

D2ETAS(i,ny-1,k) D2ETAS(i,ny-2,k) f for aliand k.

The vertical mixing terms are treated in asimilar manner.

c) Assigning the mixing coefficients

The fourth order horizontal smoothing coefficient Kys can be
expressed as apsAH AL Here oy is the non-dimensional coefficient and Ay
the horizontal grid scale taken as (Ax Ay)V2. At isthe large time step size. The
vertical coefficient Ky, equals aysAv4At. A value of 0.001 is typically used
for a. The same value of a for the second order mixing produces a similar
amount of damping on the grid scale noises. Again, it isimportant to note, that
the mixing terms using forward-in-time integration schemes are only
conditionally stable. Excessively large mixing coefficients will lead to
computational instability. A discussion on the computational stability of
diffusive formulations is presented by Pielke (1984).
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6.4.3. Upper boundary damping layer

Enhanced damping is can be optionally included in alayer near the top
boundary in order to absorb upward propagating wave disturbances and to
eliminate wave reflection at the top boundary. Preventing wave reflection at
the top boundary is especially important in the studies of terrain-induced
flows.

Rayleigh damping adds an additional term to the RHS of the
conservation equations of momentum, potential temperature and water and ice
quantities. It damps the perturbations from the base state. These terms are
represented by Dyg in Eq. (6.4.1), and have the form

VG Dy =-Ro(@) £/ (9~ (©4Lh

where Rp is the vertical profile of the inverse damping time scale, and @is u,
Vv, w, 6 or awater substance.

ARPS applies the profile of Rp suggested by Klemp and Lilly (1978)
and has the form

_I0.0 for z <z,

Ry _\ af 1-cos[z-z)/ (z—2z)]} /2 forz 22z, (6.4.12)

where zgisthe height of the bottom of the damping layer and zy the height of
the model top boundary. The depth of the damping layer (zr-zg) depends on
the type of problem being considered. In general, alayer depth 1/3 of the total
domain depth or one vertical wavelength is recommended. The damping layer
should be located above the part of model domain where the solution is of
interest. aglisthe e-folding time scale of damping at z=z1, and avalue on the
order of 10 to 50 big time steps is recommended.
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6.5. Grid Structure and Boundary Conditions
6.5.1. Introduction

In aregiona atmospheric model, only the lower boundary is physical.
The boundaries at the top and sides are usually artificial. ARPS permits the
user to choose different types of boundary conditions for the lateral, top and
bottom boundaries.

Five types of lateral boundary conditions are available in ARPS: rigid
wall, periodic, zero normal gradient, wave-radiating open boundary, and
externally specified boundary conditions. All five options can be specified
independently for each lateral boundary. Three types of boundary conditions
are available at the top and bottom boundaries: rigid top lid (impermeable
ground), periodic, and zero-normal gradient. Wave reflection from the rigid
top boundary can be suppressed by use of a Rayleigh damping layer near the
top boundary (see Section 6.4.3).

To implement the boundary conditions, extra grid points are defined
outside the physical boundary of the model domain. These extra points are
often referred to as the “fake” points or zones. The graphical relationship
between the physical domain and the boundary points is shown in Figure 6.2a
for the £ - n (x - y) cross-section and in Fig. 6.2b for the £ — { (X - 2) cross-
section of the model domain. In the figure, the physical boundary is shown as
the thick line and the physical domain (model interior domain) is shaded. The
fake points outside the physical domain constitute the computational
boundaries, and the locations of these boundaries vary with the variables due
to grid staggering. For example, the computational boundaries of horizontal
velocity uareat é = -Aé and & = Lg+ A inthe & direction, and at 1) = -An/2
and n = Lp+ An/2inthe n direction. On this grid, second order advection and
mixing terms can be readily calculated in the interior domain for all
prognostic variables.

In Figure 6.2, the physical boundary is located at the grid points of the
normal velocity components (e.g., the physical boundary on the west side
coincides with the grid points of the u-velocity). The normal velocity
components are defined up to one grid interval outside the physical boundary,
and all the other variables are defined up to half agrid interval outside.

CAPS - ARPS Version 4.0 153



Chapter 6: Theoretical Formulation

Figure 6.2. The £&—n plane of the model grid. 6.2a shows the variable arrangement
relative to the physical boundary. S represents the scalar variables. The layout of the grid in
the &-C planeis similar (6.2b), except that n and v are replaced by { and w.
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In ARPS code, al three dimensional arrays have the dimensions (1:nx, 1:ny,
1:nz). For certain variables, the elements at i=nx, or j=ny or k=nz are
redundant. More specifically,

* u is defined from (1:nx, 1:ny-1, 1:nz-1) in the index space, with
computational boundaries at i=1 and nx in the & direction, at j=1 and
ny-1inthe n direction, and at k=1 and nz-1 in the { direction.

* v is defined from (1:nx-1, 1:ny, 1:nz-1) in the index space, with
computational boundaries at i=1 and nx-1 in the £ direction, at j=1 and
ny in the n direction, and at k=1 and nz-1 in the { direction.

* w is defined from (1:nx-1, 1:ny-1, 1:nz) in the index space, with
computational boundaries at i=1 and nx-1 in the & direction, at j=1 and
ny-1inthe n direction, and at k=1 and nzin the { direction.

* Thescaars (p, 6, q, etc.) are defined from (1:nx-1, 1:ny-1, 1:nz-1) in
the index space, with computational boundaries at i=1 and nx-1 in the
¢ direction, at j=1 and ny-1in the n direction, and at k=1 and nz-1in
the ¢ direction.

On ARPS grid, the scalar point is located at the center of a 3-D grid
cell. The normal velocity components are located on the six sides of this cell.
The index range for the cells inside the physical boundary are from i=2 to nx-
2, j=2to ny-2 and k=2 to nz-2 in the three coordinate directions, respectively.
These index bounds should be used if a volume integral of the entire domain
is to be calculated, with the velocity components averaged to the cell centers
before an integral operation.

6.5.2. Lateral boundary conditions

Five options, to be discussed below, are available for the lateral
boundary condition:

1. Wall (or mirror) boundary condition;

2. Periodic boundary condition;

3. Zero-normal gradient condition;

4. Open (radiative) boundary condition;

5. Externally specified boundary condition.
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a) Wall or mirror condition

For afree-dip rigid wall, amirror type boundary condition isimposed.
For illustration purposes, we consider atwo dimensional case, and look at the

left boundary of the é-¢ slab at £ = O (Figure 6.3). The free-slip condition
dictates that w(é = -A¢ /1 2) =w(& = Aé/ 2). A rigid wall requires u(é = 0) =0.
By taking a é-derivative of the incompressible mass continuity equation, so
that d[ou/dé+owl 9]/ o€ = 0, and making use of the free-dlip condition, dw/d&
=0, we have ®u/dé2=0. From d2u/dé2=0andu=0at £ =0, we arrive at
u(é =-4A¢) =- u(& = Aé) , which isthe mirror boundary condition.

-+ Se u oS —Op
¢ " u
.
=0
i=1 2
i=1 2 3

Figure 6.3. Illustration of mirror boundary condition. The flow patternis
symmetric about the solid wall located at & = 0.

Given that u (¢ = 0) =0 and all the other variables are symmetric about
the wall, the advection and mixing terms are zero at the lateral boundary. The
pressure gradient across the boundary must also be zero for the normal
velocity equation to be valid at the boundary. Therefore, for al scalars, the

symmetric condition isapplied, i.e. 0599 =0at = 0.

In the model, the mirror boundary condition for the lateral boundaries
are implemented as follows:

At the & boundaries:
u(l,),k)  =-u(3,),k and u(nx ,j,k) =-u(nx-2,j,k)  for dl j,k.

VLK =v2jk)  andvnxljk) = v(x2jk)  foraljk
WE(Lj,K) = WE2,j,K)  and We(nx-1,j,k) = WE(nx-2,j,K) for all j k.
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S1Ljk) =92jk andgnx-1,j,k) = nx-2j,k) foralljk.
(6.5.1)
and the n boundaries:

u@i,1,k) = u(i,2,k) and u(i,ny-1,k) = u(i,ny-2,k) forallik.
v(i,1LK)  =-v(i,3,K) and v(i,ny ,K) =-v(i,ny-2,k) foralik
WC(i,1,k) = WEC(i,2k) and WC(i,ny-1,k) = WC(i,ny-2 k) for alik.

1K =Si2K  and Siny-1,k) = Siny-2k  foralik
(6.5.2)

where S represents a scalar, e.g., pressure, potential temperature or a water
quantity.

For the contravariant velocity WE, the mirror type boundary condition
isapplied. The Cartesian velocity w is then derived from u, v and WL,

After these boundary values are set, the interior values can be
computed by the prognostic equations when second order spacial differencing
Is applied. When a high order scheme is used, specia boundary treatment is
usually required. The normal velocity components at the physical boundaries
are considered to be interior and are explicitly predicted by their equations.

The predicteduat é=0and L¢, and v at n=0and L, should be zero.

b) Periodic boundary condition

The periodic boundary condition assumes that the solution outside the
computational domain replicates itself indefinitely. The solution at a distance
d to the left of the computational domain boundary equals the solution a
distance d to the left of the right boundary.

In ARPS, the periodic boundary conditions are implemented as
follows:

At the & boundaries:

u(l,j,k)=u(nx-2,j,k), u(nx ,j,k)=u(3,j,k) foraljk
v(1,j,k)=v(nx-2,j,k), v(nx-1,j,k)=v(2,j,k) foraljk.
W1,j,k)=w(nx-2,j,k), w(nx-1,j,k)=w(2,j,k) forallj,k.
S(1,j,k)=S(nx-2,j,k), S(nx-1,j,k)=S(2,j, k) forallj,k.

weont (1, , k) =wcont (nx-2,j, k) and

weont (nx-1,j, k)=wcont (2,j,k) foralljk. (6.5.3)
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and at the np boundaries:

u(i, 1, k) =u(i,ny-2,k), u(i,ny-1,k)=u(i,2, k) foralik.
v(i,1,k)=v(i,ny-2,k), v(i,ny ,k)=v(i,3,k) foradlik.

w(i, 1, k) =w(i,ny-2,k), w(i,ny-1,k)=w(i,2, k) foralik.

S(i, 1,k)=S(i,ny-2,k), S(i,ny-1,k)=S(i,2, k) foralik.
weont (i, 1, k) =wcont (i, ny-2, k) and

weont (i, ny-1, k) =wcont (i, 2, k) foralik. (6.5.9)

The periodic boundary conditions are directly applied to both w and WE.

As in the case of wall boundary condition, the interior values are
predicted by second order finite differencing schemes, the boundary
conditions having been set. When a higher order advective scheme is used,
special boundary treatment is required. The normal velocity components at the
physical boundaries are considered to be interior and are explicitly predicted

by their equations. The predicted u at é=0 should equal uat é=Lgand v at
n=0equasvat n=L, inthe periodic case.

c) Zero gradient boundary condition

For thistype of boundary condition, the gradients of all variables at the
lateral boundaries are set to zero. The expressions are similar to those givenin
(6.5.1) and (6.5.2) for the mirror boundary condition, except that all minus
signs on the right hand side of the equations are changed to positive signs.

d) Wave-radiation open boundary condition

Wave radiation boundary conditions are designed to allow waves in
the interior of the model domain to pass out freely through the boundary with
minimal reflection. Radiation boundary conditions typically employ a
simplified wave propagation equation to determine the time rate of change of
the predicted variables at the lateral boundaries. Based on the study by Oliger
and Sundstrom (1976) on the well-posedness of boundary conditions, the
wave equation is applied only to the normal components of velocity at the
boundariesin ARPS. Other variables, i.e., the components of velocity parallel
to the boundary, the potential temperature and water variables are predicted on
the boundary using the same prognostic equations as used in the interior.
However, at the lateral boundaries, upstream advection replaces the centered
advection on the boundary. The advection at the inflow boundary is set to
zero, which is based on the assumption that no gradient exists in the field
outside the boundary. The turbulent mixing terms at the boundary are set to
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the values of the adjacent interior point. The second and fourth order
computational mixing are computed in the same way as in the interior, but
with the assumption that the normal gradient in the fields outside the boundary
is zero.

Several variations of the radiation boundary condition are available.
Orlanski (1976) proposed a type in which the prognostic equation for a

variable  isreplaced by an one dimensional wave equation

oy, oy

3t =0 (6.5.5)

where c is a phase speed of wave signal propagation, which is estimated
locally using the same equation applied at one time step earlier and one grid
point interior of the boundary. Miller and Thorpe (1981) discussed a number
of variations of the original Orlanski formulation. Durran and Klemp (1983)
applied avertical average on the locally estimated ¢ and used the averaged c in
their mountain flow simulations.

Another variation of the radiation condition is to use the wave equation

W s o) 9

(6.5.6)

where u is the flow speed normal to the boundary, and C is a constant phase
speed, representing that of the dominant wave signals. This scheme is
suggested by Klemp and Wilhelmson (1978). Klemp and Wilhelmson (1978)
and others (e.g., Tripoli and Cotton, 1980) implemented the open boundary
condition using (6.5.6) in the large time step of the split-explicit time
integration system. The C is regarded as the typical internal gravity wave
propagation speed. Theory and experiments (e.g., Lilly, 1980; Clark, 1979)
show that an over-estimation of C is better than a underestimation of the same
amount. Therefore, C is usually taken as the fastest propagating gravity wave
speed, atypical estimation is HN/7mt, where H is the domain depth and N the
representative Brunt-Vaisdla frequency. A constant value between 30 and 45
m/s is often chosen for storm simulations (e.g., Tripoli and Cotton, 1980;
Clark, 1979).

Based on many tests on the above variations of radiation boundary
conditions, ARPS includes four radiation boundary condition options. These
are:

rbcopt = 1:  Klemp-Wilhelmson formulation with Eq. (6.5.6) applied on the
small time step;

CAPS - ARPS Version 4.0 159



Chapter 6: Theoretical Formulation

rbcopt = 2: Klemp-Wilhelmson formulation with Eq. (6.5.6) applied on the
large time step;

rbcopt = 3: Orlanski formulation based on Eq. (6.5.5). With this scheme, ¢
is computed on the big time step and Eq. (6.5.5) is applied on
the small time step;

rbcopt = 4: Orlanski formulation with additional vertical averaging of the
calculated c after Durran and Klemp (1983).

To illustrate the Klemp-Wilhelmson condition on the small time step
(rbcopt=1), Eq. (6.5.6) is applied to u at the x boundary (note: the same
analysis can be performed for v on the y boundary).

The wave equation (6.5.6) appliedtouis

ou ou
—~+Uu+C)=— =0, 6.5.7
) (u ) ) ( )

Equation (6.5.7) is discretized using forward-in-time and upstream-in-
space difference schemes on the small time step.

For the right boundary, C > 0, we have

T+AT T T T
Unx  ~ Uny Unx ~ Unx-1 .
T = —(ugx+ C)T y |f U+C>O (658)
T+AT T _ T T -
Unx  — Unx - _ y(uT + C) Unx — Unx - _ W ul + C‘ Unx — Unx
AT nx AX X Ax

if u+C <0 (6.5.9)

where subscript nx is the grid point index at the right boundary for u. When u
+ C >0, upstream advection gives (6.5.8). When u + C <0, (6.5.9) is obtained
by discretizing (6.5.7) using the forward-in-time, upstream-in-space difference
scheme, with the assumption that u outside the boundary has the base-state
value if y= 1, and u outside the boundary equals u at the boundary (zero
gradient) if y= 0. For O < y< 1, the boundary u is relaxed towards the base
state value using a coefficient that is proportional to [u+C| at the boundary. In
the original KW condition, yis zero. In that case, the boundary value remains
unchanged in time when u + C isdirected into the model domain.

The corresponding equations for the left boundary are:

T+AT T T T
Up —~Up o Y2TUr .
ar - W+ C)—r—, if u+C<0  (6,5.10)
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uT+AT_uT Ur—l] UT_l]
1 At = —y(u{+C) 1Ax = _WUPC‘ 1A\x X

if u+C=>0. (6.5.11)

where subscript 1 is the grid point index at the left boundary for u. In the

model code, y= rixlbc and |C| = ¢_phase, both assigned in the input file (see
Chapter 4). These calculations can be found in subroutine BKWSMLDT in
file setbdt3d.f.

For rbcopt = 2, the Klemp and Wilhelmson (1978) condition is
applied to the large time step. Again, the normal velocity component is
predicted by a simplified wave equation. We show this for the x boundary as
an example:

ou

ou
P + (u+C)& =0 (6.5.12)

where C isthe typical speed of internal gravity waves and is usually chosen to
be the fastest outward propagating gravity wave speed in the model domain.

Equation (6.5.12) is discretized using centered-in-time and upstream-
in-space difference scheme. The time differencing is consistent with that used
for the model interior.

For the right boundary, C>0, we have

YLHAL _ oAt Ut —ut
T T Uyt O ifu+C>0  (65.13)
X
t+At t—At o t—At t-At _ —
U = U™ _ ity + €)=y 4 ]t O
24t i AX e AX

ifu+r C<0 (65.14)

where subscript nx is the grid point index at the right boundary for u. The
spatial differencing is the same as for option one, but for time, leap-frog
scheme is used here reather than the forward scheme.

For completeness, the corresponding equations for the left boundary
are:

t+AL | t-At t .t

% =— (U +C) UZAxul , ifutC<0  (6.5.15)

t+At t—At t-At t-At -~

W "W (el TS e T
20t y(ul ¥ C) AX y‘ul ¥ C‘ AX

if u+C>0. (6.5.16)
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where subscript 1 is the grid point index at the left boundary for u. In the

model code, y= rIxlbc and |C| = ¢_phase. This part of calculations can be
found in subroutine BDTU in file setbdt3d.f.

For the Orlanski type boundary condition (rbcopt = 3), ¢ is determined
locally and is therefore spatially and temporarily varying. The estimated phase
speed Cis obtained from (6.5.5) and applied to u and v. For the u velocity,

2 2 1
Ce= [(ujk - U | (- Ugi U+ 2u5)] * AEIAL (6.5.17)

at the west boundary, and
-2 -2 -1
€ = [(U meajic - Unnegji!! (U neajich Ut U] ¥AEAL  (6.5.18)

at the east boundary.
For v,

-2 -2 -1
Cn = [(Via - Viad/ (- Vide Vit 2Vig)] * AnlAt (6.5.19)
at the south boundary, and

-2 -1 -1
€1 = [V inyak - Ving-20 | Ving-1ict Vingaie 2 Ving2) 1 *AnfAt - (6.5.20)

at the north boundary.

The estimated phase speed is subject to the limit of maximum Courant
number of one. It is then used in Eq. (6.5.5) to calculate the time tendencies
for u at the east and west boundaries and v at the north and south boundaries.

The fourth radiation boundary condition option (rbcopt = 4)
incorporates vertical averaging on the Orlanski computed phase speeds
following Durran and Klemp (1983). The outward directed phase speeds are
averaged over the vertical extent of the model with the inward directed phase
speed set to zero before averaging. The average phase speed is then applied to
Eqg. (6.5.5) to determine the time tendencies at the boundaries. This technique
was found to improve the results in tests with linear mountain waves, afalling
cold bubble and for gravity wave propagation cases. The mass field was
better behaved compared to the Orlanski boundary condition.

All other variables except the normal velocity components are solved
from their prognostic equations directly. All forcing terms in these equations
can be evaluated at the boundaries without any additional assumptions, except
for the normal advection and the normal mixing terms, described previously.
At the boundary, zero gradient is assumed for the turbulent mixing in the
normal direction. For the computational mixing, the mixed fields are assumed
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to have zero gradients outside the model domain. For the advection terms,
upstream differencing is used when the flow is directed into the model
domain. When the flow is directed outwards, the same relaxation procedure
used in (6.5.9) and (6.5.11) is applied, with an adjustable relaxation
coefficient y built into the formulation. Again, for y= 0, zero gradient is
assumed for the advected field outside the boundary, while for y= 1, the base
state value is advected in. For 0 < y< 1, the boundary value is relaxed towards
the base-state value.

€) Externally specified boundary condition

Inthiscase, the boundary values are obtained from a user-provided
external data set, or from a user-specified solution. Therefore, we set

u(l,j,k) and u(nx ,j,k) for all j,Kk,
u(i,1,k) and u(i,ny-1,k) for all i,Kk,
v(i,1,k) and v(i,ny ,k) for all i,Kk,
v(1,j,k) and v(nx-1,j,k) for all j,Kk,
wW1,j,k) and w(nx-1,j,k) for all j,Kk,
wi,1,k) and w(i,ny-1,k) for all i,Kk,
S(1,j,k) and S(nx-1,j, k) for all j,Kk,
S(i,1,k) and S(i,ny-1,k) for all i,Kk.

to externally specified values. WE is diagnosed from u, v and w. Most of the
time, enhanced relaxation and damping are required in a zone near the latera
boundaries, in order to reduce the inconsistencies between the model solution
and the external data. The amount of relaxation is user-specified through a
parameter in the input file. Additional information on the externally forced
boundary option can be found in Section 8.6.

6.5.3. Top and bottom boundary conditions

The vertical cross-section of the model grid is similar to that shown for
the é-n plane in Figure 6.2. For a corresponding figure for the é—{ cross-
section, onereplaces n, NY, vand j by ¢, NZ, w and k.

In the vertical direction, u, v and scalars are defined fromk = 1, nz- 1.
The time integration is performed from k= 2 to nz - 2 and their boundary
conditions are specified at k= 1 and nz- 1. wisdefined fromk = 1, nzand its
boundary conditions are specified at k = 1 and nz In the case of arigid top lid
and solid ground, wis also specified at k= nz- 1 and at k = 2, respectively.

ARPS assumes the model top boundary isflat, and isat height z= { =
H. The contravariant velocity WE, defined as the component of velocity vector
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normal to { = constant surface, vanishes at the lid. The Cartesian vertical
velocity w, defined asw = ugH/9é + voH/on + WegH/d{ also vanishes there.

Given that w= We=0 at z= H, the mirror free-slip boundary condition
requires

ol = MO, = &§l=0 at {=H,
and W (¢=H+AQ) = - W, (¢ = H-A). (6.5.21)

In the code, they are:

weont (i,j,nz-1)=0.0 for all i,j
weont (i,j,nz)=-wcont (i,j,nz-2) for all i,j,
u(i,j,nz-1)=u(i,j,nz-2) for all i,j,
v(i,j,nz-1)=v(i,j,nz-2) for all i,j
S(i,j,nz-1)=S(i,j,nz-2) for all i,j

The bottom boundary is at z = h(x,y), where h is the terrain height.
When the terrain is not flat, vertical velocity will not be zero at the ground.
The terrain-following coordinate transformation used by ARPS ensures that

the computational grid line ({ = 0) at the lower boundary follows the terrain.

At the non-penetrative lower boundary, the definition of WC requires
that

We=0a (=0 or z=h. (6.5.22)
According to the definition of w, we have

w=udh/dé+vonlon a (=0 or z=h (6.5.23)
which can aso be obtained by applying the zero normal velocity condition at
the ground. The mirror type boundary condition based on mass continuity
gives:

We({ = -A0) = WK+ A7),

where w({ = -A{ ) can be derived from u, v and WE. In ARPS, these conditions

appear as.
u (i1 = i),
v (i,j,1) =v(i,j,2),
weont (i,j,2)=0 ,

w (i,],2) = uoh/ox + voh/oh,

CAPS - ARPS Version 4.0 164



Chapter 6: Theoretical Formulation

S (i,j,1) = S(i,j,2).

Here, Sstands for all scalar variables except for p'. For p', an extrapolated
boundary conditionisused: p' (i,j,1) =-p' (i,},3) +2p' (i, ], 2).

In the vertical direction, the time integration is carried out fromk = 2,
nz- 2for u, v, and al scalars, and from k= 3to nz- 2 for w..

Apart from the rigid top and bottom boundary conditions, periodic and
zero gradient boundary conditions are also available at the vertical boundaries,
except when the vertically implicit w and p solver is used. The implementa-
tions are straightforward.

6.5.4. The base state boundary conditions

The base state density, temperature, pressure and water vapor mixing ratio at
the lateral boundaries are initialized using the same method as the interior
points. Zero vertical gradients are assumed for 8 and q,,, and the hydrostatic

relation is used to obtain p and other thermodynamic variables at the top and
bottom boundaries.

6.6. Warm Rain Microphysics Parameterization

The Kessler warm rain microphysics parameterization considers three
categories of water; water vapor, cloud water and rain water. Each of the
liquid water forms is implicitly characterized by a droplet distribution. Small
cloud droplets are first formed when the air becomes saturated and
condensation occurs. If the cloud water mixing ratio exceeds a threshold
value, raindrops are formed by auto-conversion from the cloud droplets. The
raindrops then collect smaller cloud droplets by accretion as they fall at their
terminal speed. If cloud droplets enter unsaturated air they evaporate until
either the air is saturated or until the droplets are exhausted. Raindrops also
evaporate in a subsaturated environment at a rate depending on their
concentration and the saturation deficit. When the ice phase is included, many
more processes will be involved. These processes are discussed later in
Section 6.7.

This section describes the Kessler warm rain microphysics
parameterization scheme used in ARPS 4.0. It is based on the descriptions
given by Klemp and Wilhelmson (1978) and Soong and Ogura (1973).
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6.6.1. Autoconversion rate of cloud water to rain water

The rate of autoconversion of cloud to rain water is approximated by
the simple relation

Ar = Cqr (9 - Gecrit) (6.6.1)
where A, is the autoconversion rate of cloud water to rain water in kg kg1s1i,
gcis the cloud water mixing ratio in kg kg1, gc ¢rit= 1 x 10-3 kg kglis the

cloud water mixing ratio threshold, and C5; = 1 x 10-3s-1lis the
autoconversion rate.

6.6.2. Accretion (collection)of cloud water by rainwater

The rate of accretion of cloud water by rain water is approximated by:
Cr = Cer qc /087 (6.6.2)
where C; is the accretion rate of cloud water by rain water in kg kg'1si, g is
the rain water mixing ratio in kg kg, and C; = 2.2 s'1.
6.6.3. Terminal velocity of rainwater

Theterminal fall velocity for the averaged-sized raindropsis
Vir = 36.34 (0.001 p qr)0-1364 ( p/p )05 (6.6.3)

where Vy, is the terminal velocity of air in m s1,pis the base state density in
kg mr3, p, = 1.225 kg m3 is the reference density.

6.6.4. Rainwater evaporation rate

The evaporation rateof raindrops is defined as

Cl1-ay/ad [pg %%
2.030x10* + 9.584x10% [ <P ]

1

where E; is the evaporation rate in kg kg1sl, q, is the water vapor mixing
ratio in kg kg1, p is the pressure in Pa. Note that all over-barred variables are
functions of zonly. The ventilation coefficient, C, is given by
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C=1.6+30.3922(pg) > . (6.6.5)

The evaporation rate is used only when the air is unsaturated.

6.6.5. Saturation adjustment

The saturation adjustment scheme computes the amount of water vapor
converted to cloud water if super-saturation exists (g,>qys), Or the amount of
cloud water evaporated if sub-saturation exists (gy<Qys). Here qys is saturation
mixing ratio calculated from Teten's formula (6.3.19). The amount of
adjustment to gy is given by

&]VS — - [qV-qVS.I . (666)
1+ ay(273.15-b) qysL /Cp
[T-by)?
with dqys subjected to the following test,
dQys = min[ s, gc - (6.6.7)

Here the asterisked variables have been updated for advection, diffusion,
filtering, and other forcing processes, and dqys is the amount of cloud mixing
ratio in kg kg1 created by condensation (if negative) or evaporation (if
positive).

The adjustment to the potential temperature corresponding to the
changeinqyis

o0 = - /;&:Ivs. (668)
where I isdefined as
F=L,/(71C) (6.6.9)

where Ly isthe latent heat of evaporation defined by:
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L, = 2,500,780.0 (273.15T (0167 +360a0°T) (6.6.10)

The temperature has units of °K, and L has units of Jkg1.

1 isthe Exner function (or the non-dimensional pressure) given by:

1= (p/ pg) e/ (6.6.11)

where Ry =286.04 J /(kg °K) is the gas constant for dry air, and C, =1004. J/
(kg °K) is the specific heat for dry air. P, = 1000 mb is a constant reference
pressure.

6.6.6. Differencing the microphysics scheme

The adjusted valuesfor &, g, qc, and g, are obtained from:
grl=g*ml-T(ogs+ 2AE)

Q=g+ dost+ 24t E
gc™t =gt - dovs- 2 4t (Ar + Cr)
gt =g "+ 20 A +C - E] (6.6.12)

where At is the integration time step. The last term on the right hand side of
the rain water equation is the fallout term.

6.6.7. Other adjustments

In ARPS, negative water quantities produced by advection and by the
vertical flux terms associated with rainwater fallout are not adjusted. Rather,
the negative values are set to zero and only the positive values are used in the
microphysical calculations. Since both positive and negative values are
involved in the advection and mixing processes, the total water content is
conserved apart from the rainwater fallout. In future versions of ARPS,
positive definite schemes will be used for scalar advection, so that negative
values will not be generated.
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6.7. Microphysics Rate Equations

In ARPS, the ice microphysics package is based on a code devel oped
by Tao and Simpson (1993). It includes the Kessler warm rain microphysics
and three-category ice-phase (cloud ice, snow and hail/ graupel)
parameterization schemes (Lin et al., 1983). The particle size distribution
flﬁn?tionsfor rain (gy), snow (gs) and graupel / hail (qg), are assumed to be of
the form

N(D) = N, exp(-AD) (6.7.1)

where D is the drop diameter and N(D) the number of drops of diameter
between D and D + D in unit volume of space, N,, the intercept parameter,
isthe value of N(D) for D =0, and

_ (TN |
A _( S ) (6.7.2)

is the slope of the particle size distribution in which p, and g, is density and
mixing ratio of the hydrometeors, respectively. The typical intercept
parameters used for rain, snow and graupd (hail) are 0.08 cm-4, 0.04 cm4, and
0.04 cm4 (0.0004 cm4), respectively. The density for rain, snow and graupel
(hail) are1 gcm3,0.1 g cm3, and 0.4 g cmr3(0.917 g cm-3), respectively. The
cloud ice has a single size (mono-disperse) where its diameter and density are
assumed to be 2x103 cm and 0.917 g cm-3, respectively.

The conservation equations for cloud water (qc), rain (qy), cloud ice
(ai), snow (gs) and graupel / hail (qg) have the form introduced in Eq.(6.2.27).
In the following equation, the terms describing the rate processes correspond
to Figure 6.3 and Table 6.1, in which the various processes are described.

S.=P(c- &)~ T+ Dy (6.7.3)
§,=p(-g+m=f|-T, +D, (6.7.4)
S.=p(d-s)-T;+ Dy (6.7.5)
S=p(d- s met ) = Tt Dy, (6.7.6)
Se =P (dy~ s~ My ) = Tog# Dy (6.7.7)

CAPS - ARPS Version 4.0 169



Chapter 6: Theoretical Formulation

wherem=ms+ mg, and f = fs + fg (Lin et al., 1983). The symbolsc,e, f,m, d
and s stand for the rates of condensation, evaporation of droplets, freezing of
raindrops, melting of snow and graupel, deposition of ice particles, and
sublimation of ice particles, respectively. The terms D¢, Dgr, Dgi, Dgs, and
Dqg are subgrid-scale diffusion terms for qc, qr, g; and qq, respectively. The
terms Tqgc, Tqr, Tgi, Tqs and Tgg are microphysical transfer rates between
hydrometeor species, and their sum is zero. They are defined as:

ch = _(Pmcw + Praut + I:)racw + Psfw + Dgacw + sacw + ancw)
- I:)ihom + F)in1t - F)IdW (678)
Tqi = _(Psaut + Psaci + I:)ralci + I:)sfi + Dgaci + Wgaci) (679)
+ I:)ihom - I:)imlt + Pldw
Tqr = sacw + Praut + I:>racw + gacw
(6.7.10)
_(Piacr + Dgacr + Wgacr + Psacr + ngr)
qu = Psaut + Psaci + Pmcw + Psfw + Psfi + 53Praci + 53Piacr + 52 Psacr
- [Pgacs + Dgacs + Wgacs + Pgaut + (1 - 52)Pracs]
(6.7.11)
qu = (1 - 53)Praci + Dgaci + Wgaci + Dgacw + (1 - 53)Piacr
+ Pgacs + Dgacs + Wgacs + Pgaut + (1 - 62)Pracs + Dgacr (6712)
+ Wgacr + (1 - 62)Psacr + ngr
where
Wgacr = Pwet - Dgacw - Wgaci - Wgacs'
For T > 273.16°K,
Psaut = saci = Psacw = Pram = Piacr = Psfi = Psfw
= Dacs = Wacs = Dacw = Dacr = P,
¢ ¢ ¢ 0 et (6.7.13)
= Pracs = Psacr = ngr = Pgaut = I:)imlt = 0
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For T < 273.16°K,
=P =P

Qsacw = gacw gacs idw

fom (6.7.14)

In the preceeding equations, d, = 1 for agrid box in which g, and ge< 1 x 104
g g-1, and otherwise is defined as zero. 4, = 1 for agrid box in which g, < 1 x
104 g g-1, and otherwise is defined as zero (see Linet al., 1983). D D,

gaci ! gacr
and Dy,s (W, Wy @nd W) are production rates for dry (wet) growth of

gaci ! gacr gacs

hail. A schematic diagram of microphysical processes is shown in Figure 6.4.
The explicit formulation of these hydrometeor transformations can be found in
Lin et al. (1983).

A saturation adjustment scheme that cal culates the amount of conden-
sation (and/or deposition) necessary to remove any supersaturated vapor, or
the amount of evaporation (and/or sublimation) necessary to remove any sub-
saturation in the presence of cloud water (cloud ice) is needed for a non-
hydrostatic cloud model. A relaxation technique (e.g., Newton-Raphson
method) is used to iteratively balance the heat exchange and change of phase
of water substance (Tao, et al., 1989). Initiation of cloud ice (P,,) and depo-

sitional growth of cloud ice ( P,,;) discussed in Rutledge and Hobbs (1984) is

used to initiate the cloud ice in a saturated environment. This procedure
weighs the saturation mixing ratio in favor of ice at levels above the freezing
level 0°C. This adjustment scheme will almost guarantee that the cloudy
region (defined as the area which contains cloud water and/or cloud ice) is
always saturated (100% relative humidity). This permits subsaturated down-
drafts with rain and hail/graupel particles but not cloud-sized particles.
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Figure 6.4. Cloud microphysical processes considered in the ice microphysics
parameterization scheme (after Lin et al., 1983).
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Table 6.1. Definition of symbols used in microphysics parameterization

Symbol Definition

Piepi Depositional growth of cloud ice.

P Initiation of cloud ice.

Pt Melting of cloud ice to cloud water.

Piaw Depositional growth of cloud ice at the expense of cloud water.

P rom Homogeneous freezing of cloud water to cloud ice.

Poo Accretion of rain by cloud ice; producing snow or graupel
depending on the amount of rain.

P Accretion of cloud ice by rain; producing snow or graupel
depending on the amount of rain.

P Autoconversion of cloud water to rain.

P ow Accretion of cloud water by rain.

Prew(e,) Evaporation of rain.

P ocs Accretion of snow by rain; producing graupel if rain or
snow exceeds threshold and T < 273.16 or rainif T >
273.16.

P(Q)won Accretion of cloud water by snow; producing snow (P_,)
if T<273.16 or rain (Q,,,) if T>273.16.

Poo Accretion of rain by snow; producing graupel if rain or
snow exceeds threshold; if not, produces snow.

P Accretion of cloud ice by snow.

P Autoconversion (aggregation) of cloud ice to snow.

Paw Bergeron process (deposition and riming) - transfer of
cloud water to snow.

Pq Bergeron process embryos (cloud ice) used to calculate
transfer rate of cloud water to snow ( Py, ).

Poten(d,) Deposition growth of snow.

Pains,) Sublimation of snow.

Parit(m) Melting of snow torain, T > 273.16.

Poecs Accretion of snow by cloud water to formrain, T > 273.16.

Pyau Autoconversion (aggregation) of snow to graupel.

ng,(fg) Probabilistic freezing (B,) of rain to graupel.

D(Q) gaow Accretion of cloud water by graupel.
D(W) Accretion of cloud ice by graupel.
D(W) Accretion of rain by graupel.

gaci

gacr
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Posun(s,) Sublimation of graupe!.
gmit(my) Melting of graupel to formrain, T > 273.16. (In this regime,
Qyaow 1S @ssumed to be shed asrain.)
Powe Wet growth of graupel; may involve W, and W,,; and

or both. The amount of W

gacw

must include D or W

gacw gacr !

which is not able to freeze is shed to rain.

6.8. PBL Depth Calculation

The planetary boundary layer (PBL) processes and the dispersion of
atmospheric pollutants are limited by the PBL depth. Therefore, the prediction
of the PBL depth is of great practical concern. In addition, the devel opment of
certain convective systems(e.g., dryline-forced thunderstorms) is sensitive to
the PBL depth . ARPS predicts the time evolution of PBL depth in response to
the surface heat fluxes. ARPS will make use of the computed PBL depth to
model certain physical processesin future versions of ARPS.

ARPS employs a rate equation that describes the development of the
planetary boundary layer (PBL) depth as a function of time, for stable or
unstable conditions. There are 4 options for pblopt, a parameter in the input
file:

[0, do not compute PBL depth
% user specified initial depth h,
pblopt =2, h, =u./f inwhich f isthe Coriolis parameter,
B and u. isthefrictional velocity.
BB, use 6 sounding to estimate h,

Once the initial depth (hy) is given, the time-dependent PBL depth can
be calculated according to the bulk Richardson number (stability) at the top of
PBL:

(8, — 6)h
Uy

: g
Ri, == :
b 60
where U, and 6, represent the wind speed and potential temperature at the top

of the PBL, and 6, and 6, are the reference and the surface potential
temperatures.
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6.8.1. Stable boundary layer

For Ri, > 0, the rate equation similar to that discussed in Nieuwstadt
and Tennekes (1981) is used to predict the PBL depth. That is,

dh

=T - h),
m (h,—h)
where
thetimescaleT:—§M,
4 96,/ot
o . fU2sina cosa
the equilibrium height h. =0.15 9 h ,

the angle between the wind at the PBL top and the surface wind
a = tan™ (u,/v,) - tan ™ (Ug/v,).

Note that when the absolute value of d6,/dt istoo small, the PBL depth will
be approximated by

h= u’/(fGsina).

6.8.2. Unstable boundary layer

For Ri, <0, the rate equation from Gryning and Batchvarova (1990) is
used to predict the development of the PBL depth. Let the vertical heat flux at
the surface be denoted by (w'6'),, and the Obukhov length by
_ue

Kkg(w' @),

then the PBL depth can be predicted according to

0 h? Odh _ (W@,
Hi+2A)h-2BkLO dt  (96/92),

where A = 0.2, B = 2.5, and k is the von Karman constant. Following
Tennekes (1973), dh/dz s limited to 0.2[0.2gh(w'6")./6] V3,
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6.9. Parameterization of the Surface Fluxes

6.9.1. Surface flux calculations

Numerical weather prediction is often sensitive to surface fluxes of
heat, momentum, and moisture. A stability and roughness-length dependent
surface flux model is available in ARPS using a modified Businger
formulation (Businger, et. al., 1971). An analytical procedure, instead of the
commonly used iteration method, is used in the flux calculations for a much
improved efficiency (Byun, 1990). Businger’s formulation was further
modified so that the results are more realistic for highly stable or highly
unstable environments (Deardorff, 1972b). Options for (constant) drag
coefficients are also available (options sfcphy = 1 and 3).

The surface fluxes enter the model as the lower boundary conditions
for the momentum stresses [ 113 and 723 in (Eq. 6.3.1)], turbulent heat flux [H3

in Eq. (6.3.5) for @] and turbulent moisture flux [H3 in Eq. (6.3.5) for q,] at
the ground surface.

The surface momentum fluxes are defined as

= pC,, max(V,V,;,) u (6.9.1)

— I3

- -[pww]

surface surface

= pC,, max(V,\V,;,) V (6.9.2)

]surface

= _[p\m

- T
23 |surface

where u and v are the horizontal velocity components evaluated at the lowest

grid level above the earth's surface and V =4/ u?+v? isthewind speed at the
same level. Vpinisthe lower limit of V, and isincluded to avoid zero fluxes at
calm wind condition. Vyin is specified by the user in the input file.

The surface sensible heat flux is defined as

=pC,, max(V,me)(G- 93) (6.9.3)

]surface

- H3‘surface = _[bVTH

where 6 is the potential temperature at the first grid level above the earth’s

surface and 6 is the ground temperature that is either user-specified or
predicted by the surface energy budget equations. The drag and exchange
coefficients Cgnand Cygn can be either user-specified or computed
diagnostically as described below.
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When vegetation is not considered, the moisture flux at the surfaceis:

- H3 ‘surface = _[b W’] = b qu maX(V,me)(qV - qu) (694)

surface

where @y is the water vapor mixing ratio at the first grid level above the
ground and qys is the ground level water vapor mixing ratio, which can be
user-specified or predicted by the surface energy budget equations. Cyq is the
bulk aerodynamic coefficient for the moisture flux and is often equal to Cgp.
When vegetation is considered, the surface moisture flux is given by Egs.
(6.10.21)-(6.10.32).

6.9.2. Surface fluxesover land

The surface roughness over the ocean is a function of surface
conditions, while surface roughness over land is independent of the surface
wind.

One of the practical stability parameters is the bulk Richardson
number:

. 26(z-
mb=§;—%%3ﬁ, (6.9.5)

where z is the height of the surface layer, z; is the surface roughness length,
A8 =06,-6,, and 6,05 and 6, are the base-state, surface and first model

level potential temperatures, respectively. The environment is unstable,
neutral or stableif Ri, <0, Ri, =0 or Ri, >0, respectively.

Let 6. be the temperature scale representing the surface heat flux w' 64

divided by the frictional velocity u.. According to the Monin-Obukhov (1954)
similarity theory,

k
LORAE
k

Profin(:)-w(t. )

where k is the von Karman constant, and Prg is the Prandtl number.

u = G, U, withC, = (6.9.6)

6. = C, A0 , with C, = (6.9.7)
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We note the following relationships for the drag and exchange

coefficients;
, U
Cdm = CU = m, (698)
and
U Ox
Cyn=C = . 6.9.9
ah = Co &y U0 (6.9.9)

To obtain C,, andC,,, our next task is to compute C,and C,. We
define the functional form of ¢, and ¢, that depends on the stability as
follows.

a) Unstable condition

For unstable conditions, we have (Byun, 1990)

_ E]]-"'XZD_ 1 1
2|HTE+|nBH—)(§E 2tan™ x + 2tan™ X, (6.9.10)

and
O1+n 0
=2In 6.9.11
Soat Go1y
where
Xo = (1= Valo)', (6.9.12)
x =[t-vy.)", (6.9.13)
ne=1-v:lo)" (6.9.14)
n=1-yQ)" (6.9.15)

with o =zy/L, {=2/L, z, isthe roughness length, and y,, =15and y, =9

are specified constants. The length scale { (and {, =(2y/2)¢) is computed by
the following formulation that is similar to one used in Byun (1990). When

QE-P220,

0 10
T2 chose 3 —
oo SVmE

(6.9.16)
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and when Q2 - P2 <0,

2
Z(z-z)|In(z/z)|” O O 1CL
7= ( T)Z[ ( )] D_Erb + %E+ 3,0 (6.9.17)
z-2)"In(zz) O b Ym[
where
Q =(1 +352 oy (6.9.18)
8 = cos [Py Q¢ ] (6.9.19)
—& 6.9.20
Sb - Pro ( . )
T=(R - ¢+ Rp)*" (6.9.21)
R=[2 + 2 (-Yoyz)q2] 5 (6.9.22)
ym ym ym
Foragiven Ri,, {, ¢, ¢,, C, and C, can be computed by the above
formulations.

b) Neutral condition

For the case of neutral stability, (C,) ., and (Cq)  are calculated

neu
with an extremely small negative Ri,, and these require the use of the above
equations for the unstable case.

c) Free convection condition

According to Deardorff (1972b), for free convection (highly unstable
case),

Cu =Min(Cy2(Cu) ) (6.9.23)

Cg = min(C,,3333(Cy) ) (6.9.24)

neu
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and the exchange coefficient C,, islimited by

O

1
. 0.0019(6, - 6,)3
C,, = min [C,C,, (6.-6)

U

O
C. (6.9.25)
F

d) Stable condition

Similar to Deardorff (1972b), for the stable case,

C,=(C) %- %E (6.9.26)
Co=(Cs) El— %E, (6.9.27)

where Ri_ isacritical bulk Richardson number, and set to 3.05. For practical
reasons, Ri, in the foregoing equationsis limited by

Ri, = min(Ri,, 0.25Ri,). (6.9.28)

6.9.3. Surface fluxes over ocean

Over the ocean (sea) surface, the surface roughness lengths are related
to the surface wind speed. The momentum and thermal roughness lengths are

computed by
ex O k1 (6.9.29)
=z —_, ..
ZA) p H‘ '\El E
0 ki O
7 =zeT Pr\(';lz 5 (6.9.30)

with ¢, = (0.4 +0.079U) x 10~ and ¢, =11x10~% (Anderson, 1993).

The bulk Richardson number for this caseis given by

CAPS - ARPS Version 4.0 180



Chapter 6: Theoretical Formulation

2
Ri, =3 46(z-2) (6.9.31)

The same procedure as in Section 6.9.2a is used to compute surface
momentum and heat fluxes over sea.

6.9.4. Linear distribution of surface fluxesin mixing layer

It isfound often that subgrid scale turbulent mixing and resolved scale
eddies are not effective in transporting surface momentum, heat and moisture
fluxes upwards so as to develop a well-mixed boundary layer. ARPS provides
an option to linearly distribute the surface fluxes calculated according to
Eqgs.(6.9.1)-(6.9.4) in a specified or predicted mixing layer (PBL) depth. The
linearly distribution occurs when the PBL is convectively unstable.

With the linear distribution option, the vertical turbulent momentum
fluxes (stresses) 113 and T3 and the vertical turbulent heat and moisture
fluxes H3 in the unstable boundary layer are replaced by a function that
decreases linearly from their respective surface values calculated according to
Egs.(6.9.1)-(6.9.4) to zero at the top of the boundary layer. This distribution is
neccessary for applications such as land-sea breeze simulations and is similar
to the treatment in Blackadar PBL parameterization scheme (Zhang and
Anthes, 1982). A more accurate treatment is been investigated.

6.10. Land-Surface Energy Budget and Soil-Vegetation Model

6.10.1. Land-Surface Energy and Moistur e Budgets

This model is based on the soil-vegetation model developed by
Noilhan and Planton (1989) and Pleim and Xiu (1995). It is designed to
simulate the essential processes involved in surface-atmosphere interactions
with the minimal amount of computation time and the fewest parameters and
complexities (Wong et al., 1994). At present, only snow-free and non-frozen
soils are considered. It requires the horizontal distribution of soil texture at the
land-surface. Data of surface characteristics are discussed in Section 8.3.

The model is based on five prognostic equations:

oT,
ot

= C(R-H-LE| - FT.-T,) (6.10.1)
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aath = L1,-7,) (6.10.2)
o - L (R-E-E) (6.10.4)
agft\/r - veg P—E, (6.10.5)

The meaning of each of the symbols used in this section are given in
Table 6.2. Eq. (6.10.1) shows that the time rate of change in soil surface
temperature is the residual of the surface energy balance between net radiation
Rn, surface sensible heat flux H, latent heat flux LE and Ts - T,. The soil heat
transfer. Eq. (6.10.3) shows that the time rate of change in volumetric soil
moisture near the soil surface results from the residual of the precipitation rate
at the ground, and the evaporation rate from the ground, and the transfer of
surface soil moisture with deep soil layer moisture. Egs. (6.10.2) and (6.10.4)
describe the heat and moisture budget in deep soil. Eq. (6.10.5) predicts the
time rate of change of water W; in the canopy. The functional forms of various
terms in the above set of equations are discussed as follows.

6.10.2. Radiation-soil-vegetation model
a) Thermal coefficients
The thermal coefficient Ctin (6.10.1) can be written as

C = (6.10.6)

1
1-veg  veg
G ' G

in which veg is the fractional coverage of vegetation, and the thermal
coefficient of vegetation is

C, = 10° Km’J* (6.10.7)

b/(2In 10)
%) . (6.10.8)

and the thermal coefficient of bare soil is C; = CGW( W
2

b) Radiation flux
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For surface heat balance, net radiative flux in (6.10.1) is given by
(Wong et al., 1983)

R, = Ry(1-a] — g,0T, + g,0T, (6.10.9)

in which ¢ is the emissivity of the earth's surface, ¢, = 0.725 is the
emissivity of the air, o = 5.67x10°Wm~ K™ is the Stefan-Boltzman

constant, and T is the air temperature at an atmospheric level. The total
abedois a = a, + a,, where a; isthe abedo at polar zenith and a, the

zenith angle adjustment to a. The zenith angle adjustment is given by

a, = 0.01|exp(0.0032862*%) — 1

where Z is the solar zenith angle in radians and the minimum albedo with Z =
Ois

= 0.31-0.34W,/W,, W,/W,<05
) 014 W,/ W, >0.5 °

The short-wave radiation is determined from
Ry = T Tuw S)(?Zz)cos Z (6.10.10)

in which the solar constant is §, = 1353.0 Wm*, and Earth-Sun distance
factor isfrom

& - 1.000110 + 0.034221 cosd, + 0.001280 sind, +

r* , (6.10.12)
+0.000719 cos2d, + 0.000077 sin2d,

where d, = 2rmm/365 and m is the day number starting with 0 on Jan. 1 and
ending 364 on Dec. 31. The solar zenith angle Z is defined by

cosZ = sSin@ sind + cos@ cosod cos(hr) (6.10.12)

where @isthe latitude, disthe solar declination:
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_ 23.5m
= &2 cos[zn(Jd—173)/365] (6.10.13)

where J, (= m+ 1) is Julian day.
The solar hour angle is defined by:

_15m

h= 180

(tGMT _A/15° +E, - 12) (6.10.14)

where E, = 0.158 sinfr{J, + 10//91.25) + 0.125sin[ny,/1825], (6.10.15)

tour 1S Greenwich Meridian Time, and A iswest longitude (in degrees).

To account for the attenuation by Rayleigh scattering and absorption
by permanent gases for solar radiation, the transmission function in (6.10.10)
has the form (Atwater and Ball, 1981)

1/2
T, = 1.021 — 0.084[mdirf(949><10‘8p + 0.051)] (6.10.16)

where p is the surface pressure (kPa) m,, is a directional factor that is

equivalent to air mass at pressure of 101.3 kPa and follows a formulation
given by:

My = B _ (6.10.17)
(1224 cos?Z + 1)

The water vapor transmittance in (6.10.10) can be written as

2.9UM,
., =1- H Ve (6.10.18)

0.635
(1 + 141.5u|v|dirfc) + 5.925UMg .

where M, . = my,; above any clouds and M. = 5/3 below and within cloud
layers. The path length u at level p is computed from

1/2
10 p \(27316
H= gﬁ qv(101300)( T ) dp (6.10.19)
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c) Sensible heat flux

The sensible heat flux

H = 0,€,CqVa(Ts—T,) (6.10.20)
where cp is the specific heat at constant pressure; p, and V, are, respectively,

the air density and wind speed at an atmospheric level; Cg, is the exchange
coefficient depending upon the thermal stability and roughness.

d) Latent heat flux

The latent heat flux is the sum of the evaporation from the soil surface
E, , transpiration E, , and evaporation from wet parts of the canopy E, :

LE = L(Eg +E, + Er). (6.10.21)
in which L isthe latent heat of vaporization and
E, = (1-vey) paquVa[huqm(Ts) - qva] (6.10.22)

where the relative humidity at the ground surfaceis

I 0.5[1 - cos(mNg/Wﬂ)}, W,<W,

h, = (6.10.23)
\ 1, W, =W,

with field capacity W, = 0.75W,,. The saturation mixing ratio Qysat iS
calculated using Teten's formula given in Eq. (6.3.19).

In (6.10.21) - (6.10.23),

= LR T 6.10.24
E(r = veg p, ﬁ [qv&at( s) _qva] ( LY )

F
ad  E = vegp, 0T ~ G (6.10.25)
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in which the wet fraction of the canopy, F,,, is defined as

W 2/3
Fy = [oo— 10.2
w (Wm) (6.10.26)
and W, =0.2veg LAl (mm). (6.10.27)

Here LAl isthe leaf areaindex of vegetation and it depends on the vegetation
type. The aerodynamic resistance is parameterized by

-1
R= Vi (6.10.28)

The surface resistance for evapotranspiration is computed as

_ Rsn‘in
R = [Al R FEF, (6.10.29)
in which
_ f + I:\)smin/Fesrrkax
. R 2
with f = 0552 2_ (6.10.31)
R, LAI

where R, ., = 5,000 m, R, = R,,, and R, depends on the vegetation type.

f 1, W, > W,

Fo = (Wo=Wea/ (Wh = Wear), Wi S Wo < W, (6.10.32)
Io, W, < Wy
I 1- O'OG(quat(Ta) - qva)’ qvmt(Ta) — O = 125 g/kg

F = _ (6.10.32)
\ 0.25, otherwise

F, = 1-0.0016(298.0 T, (6.10.34)
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€) Soil surface moisture

In (6.10.3), the surface volumetric moisture W, when gravity
bal ances the capillary force is computed according to

W,
qu = x—ax?(1— x| (6.10.35)
in which
_ W
X =W (6.10.36)

In (6.10.3), the coefficients are given by

b
W, 2"t
C,=Cro| o2 6.10.37
1= Cy t[wg] ( )
_ W,
C2 - CZref[Vvsat_VVz_l_Vvl (61038)

where W, is a small numerical value that limits C, at saturation. The
parameters C,g, , C,« , b, and p are soil-texture dependent.
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Table. 6.2. List of variables used in the soil model.

Name Description Coding Name  Where Defined
Ts Ground surface temperature tsfc(nx,ny) ARP340
To Deep ground temperature tsoil (nx,ny) ARP340
Wy Soil surface moisture wetsfe(nx,ny)  ARPS40
Wo Deep soil moisture wetdp(nx,ny) ARP340
Wr Canopy moisture wetcanp(nx,ny) ARPS40
Ct Land surface heat capacity ct SOILEBM
Cao Thermal coefficient for bare ground cg SOILEBM
Cv Thermal coefficient for vegetation cov SOILPARAM
b Slope of the retention curve bslope(13) SOILPARAM
Cosat Thermal coefficient for bare ground at saturation cgsat SOILPARAM
veg V egetation Fraction vegld SOILPARAM
Rn Net radiation heat flux rnflx(nx,ny) SOILEBM
Rsw Downward short wave flux rsw RADNET
a Surface albedo alf RADNET
as Soil moisture adjustment of albedo afs RADNET
az Solar zenith angle adjustment of albedo afz RADNET
S Solar constant solarc phycst.inc
(alr)? Squared ratio of average distance of the earth from a2dr2 SOLRAD
the sun to its actual distance at any time of the year
4 Solar zenith angle zenith (nx,ny)  SOLRAD
(0] Latitude at scalar points latscl (nx,ny) SOILEBM
by Solar declination sdeclin SOLRAD
Jdq Julian day jday INITPARA
hr Solar hour angle shrangl SOLRAD
er Equation of time etau SOLRAD
T Length of the day tau SOILEBM
Trg Transmittance after Rayleigh scattering and trrg RADNET
absorption by gases
Twy Water vapor transmittance trwv RADNET
Mgirf Directional factor of Rayleigh scattering and absorption  dirf SOILEBM
Mdirfc Directional factor of Rayleigh scattering and absorption  dirfc SOILPARAM
by cloud
V] Precipitation path length prepin(nx,ny)  SOILEBM
& Emissivity of the ground emissa phycst.inc
& Emissivity of the atmosphere emissy phycst.inc
g Stefen-Boltzmann constant shest phycst.inc
H Sensible heat flux shflx(nx,ny) SOILEBM
Pa Air density at anemometer level rhoa(nx,ny) SOILEBM
Va Wind speed at anemometer level windsp(nx,ny)  SOILEBM
Ta Air temperature at anemometer level tair(nx,ny) SOILEBM
Ova Mixing ratio at anemometer level gvair(nx,ny) SOILEBM
Ovsat (Tg)  Surface saturated mixing ratio gvsatts EVAPFLX
Ovsat (Tq) Saturated mixing ratio at anemometer level gvsata EVAPFLX
C1 Coefficient of the net precipitation clwg SOILEBM
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Table. 6.2. Continued ...

Name Description Coding Name  Where Defined

Co Coefficient of the perturbated near surface moisture c2wg SOILEBM
content

C1sat Vaue of Cq at saturation clsat SOILEBM

Coref Vaue of Co at Wo = 0.5 Wgyt c2ref SOILEBM

Wyeq Surface moisture when gravity and the capillary wgeq SOILEBM
forces are balanced

a Coefficient in Wyeq formula awgeq(13) SOILPARAM

p Exponent in Wgyeq formula pwgeq(13) SOILPARAM

hy Relative humidity at ground surface rhgs SOILEBM

Wi Field capacity of soil moisture wfc(13) SOILPARAM

hy Halstead coefficient hv SOILEBM

o) Fraction of foliage covered by intercepted water delta EVAPFLX

Ey Direct evaporation from the fraction 6 of foliage evaprr(nx,ny)  EVAPFLX

Eir Transpiration of the dry portion (1-0) of leaves evaprtr(nx,ny) EVAPFLX

Ev Evapotranspiration from vegetation evaprv(nx,ny) EVAPFLX

Eg Evaporation from ground evaprg(nx,ny) EVAPFLX

P Precipitation rate precip(nx,ny) SOILEBM

Ra Aerodynamic resistance (see rstcoef) EVAPFLX

Rs Surface resistance (see rstcoef) EVAPFLX

Wax Maximum value of vegetation moisture W, wrmax SOILEBM

F1 Fractional conductance of photosynthetically (see rstcoef) EVAPFLX
activeradiation

Fo Fractional conductance of water stress (see rstcoef) EVAPFLX

F3 Fractional conductance of atmospheric vapor pressure f34(nx,ny) SOILEBM

Fq Fractional conductance of air temperature f34(nx,ny) SOILEBM

LAI Leaf Arealndex lai (nx,ny) SOILEBM

Rsmin Minimum of surface resistance rsmin(14) SOILEBM

Rsmax Maximum of surface resistance rsmax SOILEBM

Rgl Species-dependent threshold value of incoming radiation  rgl(14) SOILPARAM

Winilt Wilting point of soil moisture wwlit(13) SOILPARAM
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6.11. Cumulus Parameterization Schemes

A modified Kuo scheme has been implemented in ARPS 4.0. We plan
to add an option of another cumulus scheme (e.g., Kain and Fritsch, 1993) in
the near future.

6.11.1. Modified Kuo scheme

The Kuo scheme (Kuo, 1965, 1974) is one of the earliest and most
enduringly popular schemes for cumulus parameterization. A critique of this
scheme can be found in Raymond and Emanuel (1993). In this scheme, the
amount of convection is determined by the vertically integrated moisture
convergence. The feedback to the large scale (the vertical distribution of

heating and moistening) is represented by the terms Sy (neglecting the
radiative heating) and §; in (6.2.25) and (6.2.27), respectively. The user is

required to specify: (i) confrg, afrequency of the computing cumulus scheme;
and (ii) wcldbs, acritical threshold value of the vertical velocity at cloud base.

In the Kuo scheme, the vertical structure of cumulus heating is
assumed to be in the form of arelaxation toward amoist adiabat 6, i.e.,

Sy = w (6.11.1)

where T is a relaxation time, and it can be related to the fraction of the

available moisture supply (1-b)M; that participates in the heating of an
atmospheric column:

Z

1 o* 17 (6, ~ 6) dz (6.11.2)

=ra-om

in which m(=c,T/6) is the Exner function, L is the latent heat of
evaporation, (1-b) is the precipitation efficiency that is inversely proportional
to wind shear (Fritsch and Chappell, 1980), and M;, the available moisture
supply, isgiven by

Z
M; = _-Io We* %d2+ E (6.11.3)

where E is the surface moisture flux as defined in Eq. (6.10.21).

The rate of precipitation (per unit area) due to cumulus convection is
given by

Poun= (1= b) M, (6.11.4)
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In ARPS code, the procedure of computing Sy at each grid point can
be summarized as follows:

1. Compute M, according to Eqg. (6.11.3), and check whether M, is greater than
acritical threshold value.

2. Compute moist adiabat 8, based on model sounding.

3. Determine cloud top and cloud base from model sounding, and check
whether cloud depth is deep enough and cloud top is higher than 500mb
level.

4. Check whether the vertical velocity at cloud base is greater than wcldbs, a
critical threshold value specified by the user.

5. Check the model sounding for convective instability to see if convection is
allowed.

6. If conditionsin steps 3 to 5 are all met, then compute Sy according to Egs.
(6.11.1) and (6.11.2).
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