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6 Theoretical
Formulation

6.1. Introduction ___________________________________________

ARPS is a nonhydrostatic atmospheric prediction model and is
appropriate for use on scales ranging from a few meters to hundreds of
kilometers. It is based on compressible Navier-Stokes equations describing the
atmospheric flow, and uses a generalized terrain-following coordinate system.
A variety of physical processes are taken into account in the model system.  In
this chapter, we describe the theoretical and numerical formulation of the
dynamic equations and the treatment of various physical processes.

In Section 6.2, the dynamic equations and their numerical formulations
are first described. In Section 6.3, three closure schemes for subgrid-scale
turbulence are discussed. In Section 6.4, several types of computational
mixing are described, and in Section 6.5, various boundary condition options
are presented. Sections 6.6, 6.7, and 6.8 describe, respectively, the treatment
of microphysical processes, surface layer physics, and the soil model with
coupled surface energy budget equations.

6.2. Dynamic Equations and Numerical Formulations ___________

The governing equations of the atmospheric model component (as
opposed to the other components of the model system such as the soil model)
of the Advanced Regional Prediction System (ARPS) include momentum,
heat (potential temperature), mass (pressure), water substances, turbulent
kinetic energy (TKE), and the equation of state. These equations are
represented in a curvilinear coordinate system which is orthogonal in the
horizontal. The governing equations used are the result of direct
transformation from the Cartesian system, and are expressed in a fully
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conservative form. These equations are solved in a rectangular computational
space. Solution algorithms are discussed in subsequent sections.

6.2.1. The coordinate system

The governing equations of ARPS are written in a curvilinear
coordinate system (ξ, η, ζ) defined by

ξ = x,

η = y , (6.2.1)

ζ = ζ( x, y, z ),

or equivalently, by

x = ξ,

y = η, (6.2.2)

z = z( ξ, η, ζ ).

This coordinate system is a special case of the fully three-dimensional
curvilinear system, since the constant ξ and η   surfaces remain the same as
those of constant x and y. Vertical grid stretching and a lower grid surface that
is conformal to the terrain are accommodated by the vertical transformation.

The governing equations for fluid motion in a fully 3-D curvilinear
system can be found in the literature (e.g., Thompson et al., 1985). Sharman et
al. (1988) and more recently Shyy and Vu (1991) discuss the choice of
velocity vectors (covariant, contravariant and Cartesian velocity, etc.) that
allow a conservative formulation of the momentum equations (see Appendix
B). Following their work, we use the Cartesian velocity components instead of
the contravariant components of velocity as the basic dependent variables.

As shown in Sharman et al. (1988), the Cartesian velocity components
u, v and w can be expressed as functions of the contravariant velocities Uc, Vc

and Wc,

   
u = Uc ∂x

∂ξ + Vc ∂x
∂η + Wc ∂x

∂ζ ,

   
v = Uc ∂y

∂ξ + Vc ∂y
∂η + Wc ∂y

∂ζ , (6.2.3)

   
w= Uc ∂z

∂ξ + Vc ∂z
∂η + Wc ∂z

∂ζ .
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The inverse transformation is given by

   Uc G = uJηζ
yz + vJηζ

zx + wJηζ
xy  ,

   Vc G = uJζξ
yz + vJζξ

zx + wJζξ
xy , (6.2.4)

   Wc G = uJξη
yz + vJξη

zx + wJξη
xy ,

where the Jacobians of transformation are defined as

Jηζ
yz

  ≡ 
∂( y, z ) 
∂( η, ζ )

, (6.2.5)

and √G is the determinant of the Jacobian matrix of transformation from the
(ξ, η, ζ) system to the (x, y, z) system:

   

G ≡ ∂(x,y,z)
∂(ξ,η,ζ)

=

xξ xη xζ
yξ yη yζ
zξ zη zζ

. (6.2.6)

A conservation equation in the transformed coordinate system for a
scalar φ has the form

∂( Gφ )
∂t

+ ∂( GU
c
φ )

∂ξ
+ ∂( GV

c
φ )

∂η
+ ∂( GW

c
φ )

∂ζ
= S G . (6.2.7)

assuming that the fluid is incompressible. In the above, S is a source and/or
sink term for variable φ.

The coordinate transformations defined by (6.2.1) are

   
Jηζ

yz ≡ ∂z
∂ζ Jηζ

zx ≡ 0 Jηζ
xy ≡ 0

Jζξ
yz ≡ 0 Jζξ

zx ≡ ∂z
∂ζ Jζξ

xy ≡ 0

Jξη
yz ≡ -

∂z
∂ξ Jξη

zx ≡ -
∂z
∂η Jξη

xy ≡ 1

(6.2.8)

and
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G = ∂z

∂ζ
. (6.2.9)

Note that most of these Jacobians are either zero or constant in this
special case. We denote the non-zero components as

J1 ≡  Jξη
yz

 = - 
∂z
∂ξ

 
,

J2 ≡ Jξη
zx  = - 

∂z
∂η , (6.2.10)

J3 ≡  Jζξ
zx  = 

∂z
∂ζ  .

The fully three dimensional transformation Jacobian √ G is thus

  G = | J3 | . (6.2.11)

According to the definition of the contravariant velocities in (6.2.4),
we have

  Uc = uJ3 / G ,

  Vc = vJ3 / G , (6.2.12)

  Wc = (u J1 + v J2 + w ) / G  .

Assuming that ζ increases monotonically with z, J3 ≥ 0 and therefore

J3 = √G. We also have Uc = u and Vc = v. J3 ≥ 0 is always assumed in ARPS;

therefore, J3 is equivalent to √G in the remainder of this Guide.

It follows that the transformation relations for spatial derivatives from
Cartesian (x,y,z) coordinates to the curvilinear coordinate (ξ, η, ζ) are

   ∂φ
∂x

=
1

G

∂
∂ξ ( J3 φ ) +

∂
∂ζ( J1 φ)

∂φ
∂y

=
1

G

∂
∂η ( J3 φ) +

∂
∂ζ( J2 φ)

∂φ
∂z

=
1

G

∂φ
∂ζ .

(6.2.13)
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In ARPS, the computational grid can be arbitrarily defined. The
transformation Jacobians are calculated numerically according to (6.2.10) after
the computational grid is defined. These Jacobians are used to formulate the
governing equations in computational space. Section 7.3 discusses the
available options for the computational grid setup in ARPS.

6.2.2. The  governing equations

a) The model base state

In ARPS, wind components and the state variables are defined as the
sums of base-state variables and the deviations from the base state. The base
state is assumed to be horizontally homogeneous, time invariant and
hydrostatically balanced. For this reason, the base-state mass and wind fields
are, in general, not in a geostrophic balance, except when the base-state winds
are zero.

In the model, the base state can be initialized using prescribed
analytical functions or an external sounding. When the model is initialized
using an external data set, the base state is usually constructed as the
horizontal domain average. This is true when the external data set is created
using ARPS external data pre-processor EXT2ARPS. The horizontal
homogeneity of the base state does not prevent one from initializing ARPS
with fully 3-D initial fields. A base state that is closer to the total field will
give better accuracy.

The following model variables can be written as:

u (x,y,z,t) =  u  (z) + u' (x,y,z,t)
v (x,y,z,t) =  v  (z) + v' (x,y,z,t)
w (x,y,z,t) = w' (x,y,z,t)
θ (x,y,z,t) = θ  (z) + θ' (x,y,z,t) (6.2.14)
p (x,y,z,t) = p (z) + p' (x,y,z,t)

ρ (x,y,z,t) = ρ  (z) + ρ' (x,y,z,t)
qv (x,y,z,t) =  qv  (z) + qv' (x,y,z,t)
qli (x,y,z,t) = qli ' (x,y,z,t)

where u, v and w are the Cartesian components of velocity (momentum), θ the

potential temperature, p the pressure, ρ the density, qv the water vapor mixing
ratio, and qli one of the hydrometeor categories. The over-barred variables
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represent the base state and the primed variables are the deviations. The base
state for w and qli ' is assumed zero.

In the transformed coordinate system, Eqs. (6.2.14) become

u (ξ,η,ζ ,t) =  u (ξ,η,ζ) + u' (ξ,η,ζ ,t)

v (ξ,η,ζ ,t) =  v (ξ,η,ζ) + v' (ξ,η,ζ ,t)

w (ξ,η,ζ ,t) = w' (ξ,η,ζ ,t)

θ (ξ,η,ζ ,t) = θ (ξ,η,ζ) + θ' (ξ,η,ζ ,t) (6.2.15)

p (ξ,η,ζ ,t) = p(ξ,η,ζ) + p' (ξ,η,ζ ,t)

ρ (ξ,η,ζ ,t) = ρ (ξ,η,ζ) + ρ' (ξ,η,ζ ,t)

qv (ξ,η,ζ ,t) =  qv (ξ,η,ζ) + qv' (ξ,η,ζ ,t).

qli (ξ,η,ζ ,t) = qli ' (ξ,η,ζ ,t)

The original x- and y-independent base-state variables now become
functions of all three independent variables (ξ, η , ζ) in the new coordinate
system. Therefore, the base-state arrays in the model are three dimensional.
The base-state arrays vary along the coordinate surfaces when these surfaces
are not flat. This is usually true when terrain is included.

The base state atmosphere is assumed to satisfy the hydrostatic
relation:

   ∂p
∂ζ = – G ρ g . (6.2.16)

b) The governing equations

ARPS solves prognostic equations for u, v, w, θ', p' and qψ, which are,
respectively, the x, y and z components of the Cartesian velocity, the
perturbation potential temperature and perturbation pressure, and the six
categories of water substance (water vapor, cloud water, rainwater, cloud ice,
snow, and hail).

The equation of state for an atmosphere containing water constituents
is given by (see Proctor, 1987)

   ρ =
p

RdT
(1 –

qv

ε+qv
) (1 + qv + qliquid+ice water ) (6.2.17)
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where T is the air temperature, Rd the gas constant for dry air, and ε ≡ Rd/Rv ≈
0.622 is the ratio of the gas constants for dry air and water vapor. qliquid + ice

water represents the total liquid and ice water content.

For convenience, we define the following variables:

ρ* = √ G ρ
_

u* = ρ* u

v* = ρ* v (6.2.18)

w* = ρ* w

Wc* = ρ* Wc.

The momentum conservation equations are, respectively,

   ∂u*

∂t
= - u* ∂u

∂ξ + v* ∂u
∂η + Wc* ∂u

∂ζ

-
∂
∂ξ J3 ( p'- α Div*) +

∂
∂ζ J1 ( p'- α Div* )

+ ρ*ƒv - ρ*ƒw + G Du ,

(6.2.19)

   ∂v*

∂t
= - u* ∂v

∂ξ + v* ∂v
∂η + Wc* ∂v

∂ζ

-
∂

∂η J3 ( p'- α Div*) +
∂
∂ζ J2 ( p'- α Div* )

- ρ*ƒu + G Dv ,

(6.2.20)

   ∂
∂t

(ρ* w) = - u* ∂w
∂ξ + v* ∂w

∂η + Wc*∂w
∂ζ

-
∂
∂ζ ( p'- α Div*) + ρ* B + ρ* ƒu + G Dw .

(6.2.21)
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Terms on the right hand side of Eqs. (6.2.19) and (6.2.20) are, in order,
momentum advection, perturbation pressure gradient force and Coriolis force
term. The terms D u  and Dv contain the subgrid scale turbulence and
computational mixing terms.  The Coriolis effect due to vertical motion is also

included. The Coriolis coefficients are f = 2Ω sin(φ) and ƒ  = 2 Ω cos(φ),

where Ω is the angular velocity of the earth and φ is latitude. The horizontal
base-state pressure gradient terms vanish because the base-state pressure is
assumed to be horizontally homogeneous. The removal of the base-state
pressure gradient terms from the equations reduces the computational error
associated with the terrain-following coordinate (e.g., Janjic, 1977).

In obtaining the above equations, linearization approximations are
made. The state variables that appear in the coefficients of certain terms are
replaced by their base-state values. This is true for the density in the pressure
gradient force. These approximations are consistent with those in the anelastic
systems (Ogura and Phillips, 1962; Wilhelmson and Ogura, 1972).

The vertical momentum equation (6.2.21) has one more term than
horizontal momentum equations; the buoyancy term. The total buoyancy B is
derived from the equation of state, (6.2.17):

   
B = – g

ρ '
ρ

= g
θ '
θ

–
p '

ρcs
2 +

q'v
ε + qv

–
qv

' + qliquid+ice

1 + qv
, (6.2.22)

where   cs ≡ γRT  is the acoustic wave speed, γ ≡ Cp/Cv is the ratio of the

specific heat of air at constant pressure and volume and R is the gas constant
for dry air. Term   qliquid+ice   represents the total liquid and ice water content.

The terms involving α Div* in Eqs. (6.2.19) — (6.2.21) are artificial
“divergence damping” terms designed to attenuate acoustic waves, where Div*

is the density weighted divergence defined by

   
Div*=

1

G

∂u*

∂ξ +
∂v*

∂η +
∂Wc*

∂ζ , (6.2.23)

and α is the damping coefficient.
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The effect of these terms can be clearly seen by performing the
divergence operation on the momentum equations, i.e., ∂(6.2.19)/∂x +
∂(6.2.19)/∂y + ∂(6.2.19)/∂z to obtain the following equation:

   ∂
∂t (Div * ) = α ∇2 ( Div * ) + ...  (6.2.24)

The divergence damping terms form a diffusion term acting on the three
dimensional divergence, and thus serve to damp acoustic modes. Skamarock
and Klemp (1992) show that unstable acoustic modes can be excited in the
mode-splitting time integration system used by ARPS, but can be effectively
controlled by divergence damping or by using backward-in-time biasing
(Durran and Klemp, 1983) when the w and p equations are solved implicitly.
The divergence damping has little effect on the meteorologically significant
wave modes.

The mixing terms denoted by D in Eqs. (6.2.19)—(6.2.21) will be
discussed separately in Section 6.3 and 6.4.

For thermal energy conservation, the potential temperature (θ ) is the
prognostic variable. The potential temperature is materially conservative in
the absence of diabatic processes. In the model, the actual prognostic variable
is the potential temperature perturbation, θ', and the associated equation is

   
∂
∂t

(ρ* θ ' ) = – u* ∂θ '
∂ξ + v* ∂θ '

∂η + Wc* ∂θ '
∂ζ

– ρ*w
∂θ
∂z

+ G Dθ + G Sθ .

(6.2.25)

The right hand side terms are, respectively, the perturbation potential
temperature advection, the base-state potential temperature advection, mixing,
and heat source / sink effects representing contributions from microphysical
processes, radiation and any other heating / cooling effects. The horizontal
advection of θ  vanishes because  θ  is assumed to be horizontally
homogeneous.

Among the three state variables (density, temperature and pressure),
two should be predicted and the other diagnosed. Since the pressure is directly
responsible for the mass balance in the system through the pressure gradient
forces in the momentum equations, ARPS computes pressure. The pressure
equation is obtained by taking the material derivative of the equation of state
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and replacing the time derivative of density by velocity divergence using the
continuity equation:

   
∂
∂t

(J3 p' ) = - ( J3 u )
∂p'
∂ξ + ( J3 v )

∂p'
∂η + ( J3 Wc )

∂p'
∂ζ + J3 ρ g w

- ρ cs
2 ∂

∂ξ (J3 u ) +
∂

∂η (J3 v ) +
∂
∂ζ (J3 Wc )

+ J3 ρ cs
2 1

θ
dθ
dt

-
1
E

dE
dt

,

(6.2.26)

where E ≡ 1 + 0.61 qv + qliquid+ice.

The terms on the right hand side of Eq. (6.2.26) are the advection of
perturbation pressure p', the advection of base-state pressure p , the divergence
term and the diabatic terms. The hydrostatic relation was used to substitute for
the vertical gradient of p  in the vertical p  advection term. The divergence
term is usually the dominant term for most meteorological applications. The
diabatic terms are usually small, and are therefore neglected in ARPS. This
same approximation was made in Klemp and Wilhelmson (1978).

The conservation equations for the mixing ratios of water vapor qv,
cloud water qc, rainwater qr, cloud ice qi, snow qs and hail qh are written in a
general form for a variable qψ as

   
∂
∂t

(ρ*qΨ) = – u* ∂qΨ

∂ξ + u* ∂qΨ

∂η + Wc* ∂qΨ

∂ζ

+
∂(ρ*Vqψ

qΨ)

∂ζ + G DqΨ
+ G SqΨ

.
(6.2.27)

The right hand side terms are, in order, advection, sedimentation,
mixing and source terms. The source term Sqψ represents all microphysical
processes, which are discussed in Sections 6.6 and 6.7. The sedimentation
term represents the falling of hydrometeors (rain, snow and hail) at their
respective terminal speed. Cloud droplets and ice cloud are generally assumed
to float with the air, therefore their flow-relative terminal velocity is zero.
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6.2.3. The discretized form of the governing equations

a) The model grid

The continuous equations described in the previous section are solved
numerically using finite difference methods on a rectangular computational
grid. The model variables are staggered on an Arakawa C-grid, with scalars
defined at the center of the grid boxes and the normal velocity components
defined on the corresponding box faces. The coordinate variables x, y and z
are also staggered and are defined at the u, v and w points, respectively. It
follows that we should evaluate J1= -∂z/∂ξ a half a grid interval below the u

point, J2= -∂z/∂η a half a grid interval below the v point, and J3= ∂z/∂ζ and √ G
= |J3| at the scalar point. This spatial arrangement is illustrated in Figure 6.1.

U

V

SJ3

J 1W
Z

X

Y

WZ
J1

ξ

η
ζ

13τ 31τ

ε

3H

2H

H

mK

3H

12τ 21τ

23 32ττ

2J

2J

133τ22τ11τ

Figure 6.1. A grid box depicting the staggering of the coordinate and dependent variables.

To represent the governing equations in finite difference form, we
define the following notations for averaging and differencing

   α n s = [ α ( s + n ∆s /2 ) + α ( s – n∆s /2 ) ] /2

   δ n sα = [ α ( s + n ∆s /2 ) – α ( s – n ∆s /2 ) ] / (n∆s) (6.2.28)
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where α is a dependent variable and s is an independent variable indicating the
coordinate direction in which the operation takes place. n is an integer.

The numerical formulations of u*, v*, w* and Wc* defined in (6.2.18)
are:

u* = ρ*ξ
 u,

v* = ρ*η
 v, (6.2.29)

w* = ρ*ζ
 w,

W c* = ρ*ζ
 W c.

The contravariant vertical velocity W
c
 
 is also defined at the w point,

and is evaluated according to

 Wc =(  u*ζ
 J1

ξ
 +  v*ζ

 J2

η
 + w* ) / ( G

 ζ
 ρ*ζ

 ). (6.2.30)

Clark (1977) found that a proper discretization of this equation is very
important in obtaining a correct kinetic energy budget in an anelastic model.

b) Numerical integration of governing equations

Since the model atmosphere described by the governing equations is
compressible, meteorologically unimportant acoustic waves are also supported
by the model. The presence of acoustic waves severely limits the time step
size of explicit time integration schemes. To improve the model efficiency, the
mode-splitting time integration technique presented in Klemp and Wilhelmson
(1978) is employed. This technique divides a big integration time step into a
number of computationally inexpensive small time steps and updates the
acoustically active terms every small time step while computing all the other
terms only once every big time step. Consequently, only the small time step
size is limited by the acoustic wave speed.

The large time-step integration uses a centered three-level (leapfrog)
time differencing scheme. With the exception of the advection terms, the
spatial difference terms are second-order accurate.  The advection, at the
option of the user, can be either second- or fourth-order accurate.  The large
time interval is limited by a stability condition based on advective and
(optionally) on gravity wave speeds. For the small time step integration, there
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are two options. The first is the forward-backward scheme that is fully
explicit. In this case, the momentum equations are first integrated one small
time step using a forward scheme (relative to the pressure gradient force
terms), then the pressure equation is integrated forward using a backward
scheme (relative to the divergence term which uses the updated velocities).
The other option is the Crank-Nicolson scheme which solves the w  and p
equations implicitly in the vertical direction. The algorithm is absolutely
stable with respect to vertical acoustic waves. The small time step size is, in
this case, independent of the vertical grid spacing, therefore allowing a much
larger time step size when the horizontal to vertical grid aspect ratio is large.
An implicit step is more expensive than an explicit step due to the need to
solve a tridiagonal system at each time step.

ARPS also provides an option for including the gravity wave modes in
the small time steps. This involves evaluating the thermal buoyancy and base
state potential temperature advection term on the small time step, and stepping
the θ equation there as well.

The finite difference form of the u, v, w, p and θ equations are:

   
ρ*

ξ uτ +∆τ – uτ

∆τ =

– δξ J3 ( p' - α Div*) + δζ J1 p' - α Div*
ζ ξ

τ

+ fu
t , (6.2.31a)

   
ρ*

η vτ +∆τ – vτ

∆τ =

– δη J3 ( p' - α Div*) + δζ J2 p' - α Div*
ζ η

τ

+ fv
t
, (6.2.31b)

   
ρ*

ζ wτ +∆τ – wτ

∆τ =

+ α δζ Div *
τ
+ g ρ* θ ' /θ ζ τ

– β δζ p'τ+ ∆τ +(1 – β) δζ p'τ

– β gJ3 p'/ cs
2ζ τ + ∆τ

+ (1 – β) gJ3 p'/ cs
2ζ τ

+ fw
t , (6.2.31c)
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J3

p'τ +∆τ – p'τ

∆τ =

– ρ cs
2 δξ( J3

ξ
u ) + δζ( J1u

ζξ
) + δη ( J3

η
v ) + δζ( J2v

ζη
)

τ +∆τ

– ρ cs
2 β δζw

τ+ ∆τ+ (1 – β) δζw
τ

+ gρ* β w
ζ τ+ ∆τ

+ (1 – β) w
ζ τ

+ fp
t ,

(6.2.31d)

   
ρ*

θ 'τ +∆τ – θ 'τ

∆τ = – ρζ
w δζθ

ζ τ

+ fθ
t . (6.2.31e)

The acoustically active terms include the pressure gradient force,
divergence damping, divergence term in the pressure equation, buoyancy due
to pressure perturbation (related to compressibility) and vertical pressure
advection. The terms responsible for internal gravity waves include the
buoyancy due to temperature perturbations and the vertical advection of the
base-state potential temperature. The terms that are not responsible for
acoustic or gravity wave modes are contained in f t.

For each big time step, the u, v, w, p' and θ' equations are integrated

forward from t-∆t and t+∆t during ns number of small time steps, where ∆t is

the big time step size. The small time step size, ∆τ, satisfies equation 2∆t =
ns∆τ  . The superscripts t and τ in (6.2.31) indicate the time level at which the

terms are evaluated. The terms with superscript τ or τ+∆τ are evaluated every
small time step and those with superscript t are evaluated once every big time
step and kept fixed throughout the small steps.

In Eqs. (6.2.31c) and (6.2.31d), time averaging is performed on several
terms with β  as the weighting coefficient. For the vertically explicit option, β
is set to zero in the w equation and to unity in the p equation. In this case, the
u, v and w equations are stepped forward one time step, then the p equation is
integrated forward using the updated u, v and w. Relative to the divergence
term, the time integration for pressure is backward. For β ≠ 0, the time

integration for the w  and p equations becomes implicit. For β = 0.5, the
averaging is centered in time and equivalent to that used by Klemp and
Wilhelmson (1978).
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Skamarock and Klemp (1993) showed that the mode-splitting scheme
used here is unstable to certain acoustic waves due to the interaction between
the advection and propagation of these waves. Durran and Klemp (1983)
found that a value of β between 0.5 and 1.0 (effectively biasing the scheme
towards backward-in-time) can damp certain unstable acoustic modes in a
compressible model. Ikawa (1988) showed that, for β = 1, the scheme is
neutral to horizontally propagating acoustic waves but severely damps the
vertical modes. In general, a value of 0.6 is sufficient to control unstable
acoustic modes.

Divergence damping is another effective way of controlling the
unstable modes, and is the only method available for the explicit option.
Finally, with the unstable modes effectively under control, the vertically
implicit scheme is absolutely stable to vertically propagating acoustic waves.
The solution procedure for the implicit option is given in the next subsection.

It should be noted that, in (6.2.31), we include the buoyancy due to
pressure perturbation [ gp' /(ρc2 )] and the vertical base-state pressure
advection [ −ρgw ] inside the small time steps. These two terms are found to
be responsible for certain high frequency oscillations, and must be treated in
this manner.

c) Terms not related to acoustic or gravity waves

The remaining non-acoustic and non-gravity wave terms in the
governing equations are:

   
f u

t = – ADVU t + ρ* f v
η ξ

– ρ* ƒ w
ζ ξ

t

+ J3 Du
t – ∆t, (6.2.32a)

   
f v

t = – ADVV t – ρ* f u
ξ η t

+ J3 Dv
t – ∆t, (6.2.32b)

   
fw

t = – ADVW t + ρ* Bq

ζ t

+ ρ* ƒ u
ξζ t

+ J3 Dw
t – ∆ t , (6.2.32c)

  fp
t = – ADVP t, (6.2.32d)

   fθ
t = – ADVT t + J3 Dθ

t – ∆t + J3 Sθ
t
, (6.2.32e)
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where Bq, the water substance contribution to buoyancy, is defined by
Eq.(6.2.36) and ADVU, ADVV, ADVW, ADVP and ADVT are the advection
terms for u, v, w, θ' and p', respectively. The discrete formulations for them
depend on the choice of advection schemes. ARPS 4.0 has options for second
and fourth order centered differencing. The second-order advection terms are
given by

   
ADVU = u*

ξδξ u
ξ
+ v*

ξ δηu
η
+ Wc*

ξ
δζu

ζ

,

   
ADVV = u*

ηδξ v
ξ
+ v*

η δηv
η
+ Wc*

η
δζv

ζ

,

   
ADVW = u*

ζδξ w
ξ
+ v*

ζ δηw
η
+ Wc*

ζ
δζw

ζ

,

   ADVP = J3
ξ
u δξ p'

ξ
+ J3

η
v δη p'

η
+ J3

ζ
Wc δζ p'

ζ
,

   ADVT = u* δξθ '
ξ

+ v* δηθ '
η

+ Wc* δζθ '
ζ

. (6.2.33)

The fourth-order terms can be expressed as a weighted average of two terms:

   
ADVU =

4
3

u*
ξδξ u

ξ
+ v*

ξ δηu
η
+ Wc*

ξ
δζu

ζ

–
1
3

u*
2ξδ2ξ u

2ξ
+ v*

ξη δ2ηu
2η

+ Wc*
ξζ

δ2ζu
2ζ

,

   
ADVV =

4
3

u*
ηδξ v

ξ
+ v*

η δηv
η
+ Wc*

η
δζv

ζ

–
1
3

u*
ηξδ2ξ v

2ξ
+ v*

2η δ2ηv
2η

+ Wc*
ηζ

δ2ζv
2ζ

,

   
ADVW =

4
3

u*
ζδξ w

ξ
+ v*

ζ δηw
η
+ Wc*

ζ
δζw

ζ

–
1
3

u*
ζξδ2ξ w

2ξ
+ v*

ζη δ2ηw
2η

+ Wc*
2ζ

δ2ζw
2ζ

,
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ADVP = 4

3 J3
ξ
u δξ p'

ξ
+ J3

η
v δη p'

η
+ J3

ζ
Wc δζ p'

ζ

– 1
3 J3

ξ
u

ξ
δ2ξ p'

2ξ
+ J3

η
v

η
δ2η p'

2η
+ J3

ζ
Wcζ

δ2ζ p'
2ζ

,

   
ADVT = 4

3 u* δξθ '
ξ

+ v* δηθ '
η

+ Wc* δζθ '
ζ

– 1
3 u*ξ δ2ξθ '

2ξ
+ v*

η δ2ηθ '
2η

+ Wc*
ζ

δ2ζθ '
2ζ

.

(6.2.34)

It can be shown (Xue and Lin, 1991, unpublished manuscript) that
these terms are fourth order for constant flows. When the flow is not constant,
the truncation error is proportional to the gradient in the velocity field, and the
error is smaller than that of the fourth order scheme presented by Wilhelmson
and Chen (1983).

The above advection terms are written in advective form. Xue and Lin
(1991) showed that this form is numerically equivalent to the flux form
consisting of a flux term plus an anelastic correction that is often used by
other modelers (e.g., Wilhelmson and Chen, 1983). For example, consider the
second order advection for potential temperature. We have

  u* δξθ '
ξ

+ v* δηθ '
η

+ Wc* δζθ '
ζ

≡ δξ( u* θ '
ξ
) + δη( v* θ '

η
) +δη( Wc* θ '

η
) + θ ' Div * . (6.2.35)

In an anelastic system, Div* = 0 and thus the advection can be written
in a conservative flux form. In a compressible system, Div* is not completely
negligible but should remain small (it is actually damped by the divergence
damping). Neglecting the effect of compressibility, both the second order and
fourth order advection formulations given above are quadratically
conservative (Xue and Lin, 1991; Arakawa and Lamb, 1977).

Term Bq in Eq.(6.2.32c) is the contribution to the buoyancy by water
substance and is given by

   

Bq = g
qv'

ε + qv
–

qv' + qliquid+ice

1 + qv
. (6.2.36)
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The advection, Coriolis force and Bq are evaluated at the current time
level of the leapfrog integration. The turbulence and computational mixing
terms are, however, evaluated, due to stability requirement, at the previous
time level.

It should also be noted that the discretized Coriolis terms satisfy the
conservation of energy implied by their continuous form.

The equations for water substances are solved completely on the big
time step, and the numerical formulation is given in a general form for qψ as

   
ρ* qψ

t + ∆t – qψ
t – ∆t

2∆t
= – ADVQ t + J3 Dqψ

t – ∆t + J3 Sqψ

t

(6.2.37)

where the advection term ADVQ is given by the second order advection
scheme

   ADVQ = u* δξqψ
ξ

+ v* δηqψ
η

+Wc* δζqψ

ζ
 (6.2.38)

or by the fourth order advection scheme

   
ADVQ =4

3 u* δξqψ
ξ

+ v* δηqψ
η

+Wc* δζqψ

ζ

– 1
3 u*ξ δ2ξqψ

2ξ
+ v*

η δ2ηqψ
2η

+Wc*
ζ

δ2ζqψ

2ζ

.

(6.2.39)

Again, the advection is calculated at the center time level (t) of the leapfrog
time step and the mixing terms at the past time level (t-∆t).

c) The vertically implicit pressure and w solver

When the time averaging coefficient β is not zero, Eqs. (6.2.31c) and
(6.2.31d) become simultaneous equations for w  and p' at future time step.
These two equations have to be solved together.

After regrouping the unknown terms, the pressure equation (6.2.31d)
can be rewritten as
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p'τ +∆τ = p'τ + Fp +

∆τ
J3

β gρ* w
ζ

– ρ cs
2δζw

τ+ ∆τ

(6.2.40)

where

   
Fp =

∆τ
J3

fp
t + (1 – β) gρ* wζ – ρ cs

2δζw τ

–
∆τ
J3

ρ cs
2 δξ( J3

ξ u ) + δζ( J1uζξ) + δη ( J3
η v ) + δζ( J2vζη) τ +∆τ.

(6.2.41)

On the right hand side of (6.2.40), only the third term involving w at τ+∆τ is
unknown.

Eliminating p' τ+∆τ in w equation (6.2.31c) using (6.2.40) yields

   

wτ +∆τ = wτ + Fw –
∆τ2β2

ρ*
ζ δζ

g ρ*

J3

w
ζ

–
ρ cs

2

J3

δζw

τ+ ∆τ

–
∆τ2β2g

ρ*
ζ

g ρ*

cs
2 w

ζ
ζ

– ρ δζw
ζ

τ+ ∆τ (6.2.42)

where the known terms on the right hand side are grouped into Fw as

   
Fw =

∆τ
ρ*

ζ fw
t– δζ p'τ – α Div *

τ
+ g ρ*

θ '
θ

–
p'

ρcs

2

ζ
τ

– β gJ3 Fp / cs
2

ζ

– β δζFp .
(6.2.43)

Note that ARPS has the option of calculating the thermal buoyancy term on
the large time step.

Eq. (6.2.42) now has only one unknown, wτ+∆τ  , and the spatial
averaging and differencing are all performed in the vertical direction. This
equation is discretized using the second order scheme. After considerable
algebra, we arrive at the following equation:

Ak wk-1 + Bk wk + Ck wk+1 = Dk , (6.2.44)

where
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Ak = ( - Nk cs
2

k-1 + Pk J3 k-1 ) ( Mk-1 + Lk-1 ) ,

Bk = 1 + Nk [ ( Mk + Lk ) c2
k - ( Mk-1 - Lk-1 ) cs

2k-1 ]
+ Pk [ ( Mk + Lk ) J3 k + ( Mk-1 - Lk-1 ) J3 k-1 ,

Ck = ( Nk cs
2

k + Pk J3 k ) ( Mk - Lk ) ,

Dk = Fw k + wτ
k , (6.2.45)

with 
   

Pk =
∆τ2β2g

2 ρ*
ζ , Nk =

∆τ2β2

∆ζ ρ*
ζ , Mk =

g ρ*

2 J3cs
2 , Lk =

ρ*

∆ζ J3
2 .

Equation (6.2.44) forms a linear tridiagonal equation system, and can
be solved using a standard tridiagonal solver given appropriate boundary
conditions. The same equation system also appears in the Poisson equation
solver using alternating direction implicit (ADI) method described in Section
9.3. The procedure described there is used to solve (6.2.44).

In ARPS, only non-penetrative top and boundary conditions are
supported by the vertically implicit solver. In this case, w at the top boundary
(wnz-1) is set to zero, and w at the lower boundary (w2) is calculated from the
horizontal velocities and the terrain height, ensuring that the flow at the lower
boundary follows the terrain. The top and bottom boundary conditions are
discussed further in Section 6.5.

After wτ+∆τ is solved from (6.2.44), it is substituted into Eq. (6.2.40) to
yield pressure p'τ+∆τ .

6.3. Subgrid Scale Turbulence Closure  _______________________

6.3.1.  Introduction

Turbulence parameterization, the closure linking the resolved scales
and the unresolved subgrid-scale (SGS), is critical to the successful simulation
of many flows. This section discusses three available options in ARPS for
parameterizing the subgrid scale turbulence - the Smagorisky, 1.5 order
turbulent kinetic energy (TKE) and Germano dynamic subgrid-scale (SGS)
closure schemes. The Smagorinsky scheme is a special case of the TKE
equation.  The Germano dynamic SGS closure converts previously prescribed
SGS model coefficients to self-determined parameters that vary with time and
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space.  In version 4.0 of ARPS, the Germano scheme is only available for the
flat-terrain formulation.

6.3.2. The turbulent mixing formulations

The turbulent mixing terms in the governing equations (6.2.19) —
(6.2.21), (6.2.25) and (6.2.27) are described in detail in this section. For the
momentum equations, these terms are expressed in terms of the Reynolds
stress tensor τij, as

   
G Du = G

∂τ11

∂x
+

∂τ12

∂y
+

∂τ13

∂z

=
∂
∂ξ J3 τ11 +

∂
∂η J3 τ12 +

∂
∂ζ τ13 + J

1
τ11 + J

2
τ12 ,

   
G Dv = G

∂τ21

∂x
+

∂τ22

∂y
+

∂τ23

∂z

=
∂
∂ξ J3 τ21 +

∂
∂η J3 τ22 +

∂
∂ζ τ23 + J

1
τ21 + J

2
τ22 ,

(6.3.1)

   
G Dw = G

∂τ31

∂x
+

∂τ32

∂y
+

∂τ33

∂z

=
∂
∂ξ J3 τ31 +

∂
∂η J3 τ32 +

∂
∂ζ τ33 + J

1
τ31 + J

2
τ32 .

The stress tensor is parameterized in terms of the resolvable scale
quantities:
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τ11 = ρ Kmh ( D11 -

2
3

Div ) ,

τ12 = ρ Kmh D12 ,

τ13 = ρ Kmv D13 ,

τ21 = ρ Kmh D12 ,

τ22 = ρ Kmh ( D22 -
2
3

Div ) ,

τ23 = ρ Kmv D23 ,

τ31 = ρ Kmh D13 ,

τ32 = ρ Kmh D23 ,

τ33 = ρ Kmh ( D33 -
2
3

Div ) .

(6.3.2)

Here Kmh and Kmv are horizontal and vertical turbulent mixing coefficients for
momentum. We distinguish the horizontal value from the vertical to make
provision for considering anisotropic turbulence. Dij  is the deformation
tensor, and Div,  the velocity divergence,  is defined as

   
Div =

1

G

∂( G u)
∂ξ +

∂( G v)
∂η +

∂( G W
c
)

∂ζ .
(6.3.3)

With respect to the stress tensor, the divergence terms are small and therefore
are neglected in ARPS.

The deformation tensor, Dij  in (6.3.2), is given by

   
D11 = 2

∂u
∂x

=
2

G

∂(J3u)

∂ξ +
∂(J1u)

∂ζ ,

   
D22 = 2

∂v
∂y

=
2

G

∂(J3v)

∂η +
∂(J2v)

∂ζ ,

   
D33 =2

∂w
∂z

=
2

G

∂w
∂ζ , (6.3.4)

   
D12 =

∂u
∂y

+
∂v
∂x

=
1

G

∂
∂η(J3u) +

∂
∂ξ(J3v) +

∂
∂ζ ( J2u + J1v ) ,
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D13 =

∂u
∂z

+
∂w
∂x

=
1

G

∂
∂ξ(J3w) +

∂
∂ζ ( u + J1w ) ,

   
D23 =

∂v
∂z

+
∂w
∂y

=
1

G

∂
∂η(J3w) +

∂
∂ζ ( v + J2w ) .

The turbulent mixing for potential temperature θ and water substances

can be written in a general form for a scalar φ :

   
G Dφ = G

∂H1

∂x
+

∂H2

∂y
+

∂H3

∂z

=
∂
∂ξ(J3H1) +

∂
∂η(J3H2) +

∂
∂ζ H3 + J1 H1 + J2 H2

(6.3.5)

where H1, H2 and H3 are horizontal and vertical turbulent fluxes of φ in the x,
y and z directions respectively. These fluxes are defined by

   
H1 = ρ KHh

∂φ
∂x

= ρ KHh
1

G

∂
∂ξ ( J3φ ) +

∂
∂ζ ( J1φ )

   
H2 = ρ KHh

∂φ
∂y

= ρ KHh
1

G

∂
∂η ( J3φ ) +

∂
∂ζ ( J2φ ) (6.3.6)

   
H3 = ρ KHv

∂φ
∂z

= ρ KHv
1

G

∂φ
∂ζ

where KHh and KHv are respectively horizontal and vertical mixing coefficients
for φ. In general, the mixing coefficients are taken to be the same for heat,
moisture, water or ice quantities. KH equals Km/Pr where Pr is the turbulent
Prandtl number and is usually a constant having a value between 1/3 and 1.

The key to a turbulence closure scheme is the determination of the
mixing coefficients. The Smagorinsky (1963) first-order closure scheme and
the 1.5 order turbulent kinetic energy (TKE) based closure scheme are
discussed in the following subsections. First, we discuss the spatial
discretization of the formulations presented above.

As shown in Figure 6.1, variables τ11, τ22, τ33, D11, D22, D33, Km and
KH are defined at the scalar point at the grid box center, H1 at the u point, H2
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at the v point, and H3 at the w point. τ13, τ31 and D13 are defined at the same

point as J1. τ23, τ32 and D23 are defined at the same point as J2. τ12, τ21 and
D12 are defined half a grid interval to the right of v. Given this grid
arrangement, the discretization of the turbulence terms are straightforward.

According to Eq. (6.3.4.),

   
D11 = 2

∂u
∂x

=
2

G
δξ ( J3

ξ
u ) + δζ ( J1u

ζ ξ
)

   
D22 = 2

∂v
∂y

=
2

G
δη ( J3

η
v ) + δζ ( J2v

ζ η
)

   
D33 = 2

∂w
∂z

=
2

G
δζ w (6.3.7)

   
D12 =

1

G
ξ η δη ( J3

ξ
u ) + δξ ( J3

η
v ) + δζ ( J2

ξ
u

ζ η
+ J1

η
v

ζ ξ
)

   
D13 =

1

G
ξ ζ δξ ( J3

ζ
w ) + δζ (u +J1 w

ξ ζ
)

   
D23 =

1

G
ηζ δη ( J3

ζ
w ) + δζ (v +J2 w

η ζ
)

.

The stresses τ ij  given in (6.3.2) are then obtained using Dij with
appropriate spatial averages of    ρ Km ,



Chapter 6: Theoretical Formulation

CAPS - ARPS Version 4.0 137

   τ11 = ρ Kmh D11 ,

τ12 = ρ Kmh
ξη

D12 ,

τ13 = ρ Kmv
ξζ

D13 ,

τ21 = ρ Kmh
ηξ

D12,

τ22 = ρ Kmh D22 ,

τ23 = ρ Kmv
ηζ

D23 ,

τ31 = ρ Kmh
ζξ

D13 ,

τ32 = ρ Kmh
ζη

D23 ,

τ33 = ρ Kmv D33 .

(6.3.8)

where the velocity divergence, Div in τ11, τ22 and τ33,  is calculated according
to (6.3.2) at the scalar point

   Div = [ δξ { G
ξ
u }+ δη { G

η
v } + δζ { G

ζ
Wc}] / G . (6.3.9)

The discretized form of the turbulent fluxes for scalars is

   
H1 =

ρ KHh

G

ξ

δξ (J3φ) + δζ (J1φξ ζ) ,

   
H2 =

ρ KHh

G

η

δη (J3φ) + δζ (J2φηζ) , (6.3.10)

   
H3 =

ρ KHv

G

ζ

δζ φζ .

Assuming that the mixing coefficient for momentum, Km , can be
determined and the mixing coefficient for temperature and water, KH, is equal
to Km/Pr, then the turbulent mixing terms in (6.3.1) and (6.3.5) can be readily

calculated from τij and Hi from (6.3.8) and (6.3.10):
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G Du = δξ J3 τ11 + δη J3

ξη τ12 + δζ τ13 + J
1

τ11
ξζ + J2

ξ τ12
ζ η

   
G Dv = δξ J3

ξη τ21 + δη J3τ22 + δζ τ23 + J1
η τ21

ζ ξ
+ J

2
τ22

ηζ

   
G Dw = δξ J3

ξζ τ31 + δη J3
ηζτ32 + δζ τ33 + J1

ζ τ31
ζ ξ

+ J2
ζ τ32

ζ η (6.3.11)

and
   
G Dφ = δξ J3

ξ
H1 + δη J3

η
H2 + δζ H3 + H1

ζ
J1

ξ
+ H2

ζ
J2

η
.(6.3.12)

6.3.3. Smagorinsky first-order closure

The key to a turbulence closure scheme is the determination of the
mixing coefficients. The modified Smagorinsky scheme (Smagorinsky, 1963;
Lilly, 1962) defines Kmh = Kmv = Km as

   Km = (k ∆)2 [ max( |Def |2 - N 2/Pr , 0 ) ]
1/2

(6.3.13)

where k is an empirical constant and takes a value of 0.21 after Deardorff
(1972a). ∆ is the a measure of the grid scale. On a model grid with similar grid
spacing in all three directions, the turbulence is nearly isotropic,

∆ = (∆x ∆y ∆z)1/3. (6.3.14)

When the grid aspect ratio (∆x / ∆z ) is on the order of 10 or larger, as is often
the case when high vertical resolution is required in the boundary layer, Kmv as
determined according to (6.3.13) and (6.3.14) can become too large, resulting
in excessive vertical mixing. This artificially strong vertical mixing is found to
destroy the base state environment when the environment is not stable enough
to suppress the turbulence. The larger vertical coefficient also imposes a
severe computational stability constraint on the large time step size. This issue
is addressed by using different length scales for the horizontal and vertical
directions, so that

   Kmh = (k ∆h)
2 [ max( |Def |2 - N 2/Pr , 0 ) ]

1/2
,

Kmv = (k ∆v)
2 [ max( |Def |2 - N 2/Pr , 0 ) ]

1/2
,

(6.3.15)

where
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   ∆h = (∆x ∆y )1 / 2 and ∆v = ∆z (6.3.16)

We refer to this case as an anisotropic turbulence case. A similar approach is
taken by Tripoli and Cotton (1982).

The magnitude of deformation |Def| in (6.3.13) is given by

  
|Def| 2 =

1
2

( D11
2 + D22

2 + D33
2 ) + D12

2 + D13
2 + D23

2 -
2
3

Div2 . (6.3.17)

In (6.3.13) and (6.3.15), N2 is the Brunt-Väisälä frequency

   

N2 =

g

G

∂lnθ
∂ζ for qv < qvs

g

G

1 + Lqvs /(RT)

1 + L2qvs /(CpRvT
2)

∂lnθ
∂ζ +

L
CpT

∂qvs

∂ζ -
∂qw

∂ζ for qv ≥ qvs

(6.3.18)

where qvs is the saturation mixing ratio and qw the total water mixing ratio. L
the latent heat of vaporization, R the gas constant for dry air, Rv the gas
constant for water vapor and Cp the specific heat for dry air at constant
pressure. When the air becomes saturated, the moist static stability replaces
the dry stability, and the formula for the moist static stability in (6.3.15)
follows Durran and Klemp (1982). The contribution of ice processes to
(6.3.18) are neglected.

The saturation mixing ratio qvs is calculated using Teten’s formula

  
qvs =

380
p

exp( aw

T-273.16
T- bw

) (6.3.19)

where

aw = 17.27 and bw = 35.5 for T ≥ 273.16 K

aw = 21.875 and bw = 7.5 for T < 273.16 K.
(6.3.20)

The cell-centered deformation in (6.3.17) is calculated according to
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|Def|2 =

1
2

( D11
2 + D22

2 + D33
2 ) + D12

ξη 2
+ D13

ξζ 2
+ D23

ηζ 2

(6.3.21)
and the cell-centered Brunt-Väisälä frequency N is calculated according to

   

N2 =

g

G

1
θ δζ θζ for qv < qvs

g

G

1 + Lqvs /(RT)

1 + L2qvs /(CpRvT
2)

1
θ δζ θζ +

L
CpT

δζ qvs
ζ

- δζ qw

for qv ≥ qvs

(6.3.22)

Km can then be readily calculated from (6.3.15), and it is done at the scalar
point. The mixing coefficient for temperature and water is KH = Km/Pr,
where Pr  is the Prandtl number.

6.3.4. 1.5-order turbulent  kinetic energy-based closure scheme

With this scheme, the turbulent mixing coefficient is related to the
turbulent kinetic energy E (≡ u'2 +v'2+w'2 / 2) instead of the deformation and
static stability as in the Smagorinsky closure scheme. In this case, an
additional prognostic equation for the turbulent kinetic energy, E, is solved,
which is

   ∂ ρ*E
∂t = – u* ∂E

∂ξ + v* ∂E
∂η + Wc * ∂E

∂ζ + C

+ ρ* Km Def
2

– 2
3 E Div – ρ*

Cε

l
E2 / 3

+ 2
∂
∂ξ (J3H1) +

∂
∂η (J3H2) +

∂
∂ζ H3 + J1H1 + J2H2

 (6.3.23)

The terms on the right hand side are, respectively, the advection,
potential-kinetic energy conversion, shear production, dissipation and
diffusion of turbulent kinetic energy. The formulation of the diffusion term, is
similar to those for heat and moisture. In (6.3.23), the turbulent flux
components are:
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H1 = ρ Kmh

∂E
∂x

=
ρ Kmh

G

∂
∂ξ ( J3E ) +

∂
∂ζ ( J1E)

   
H2 = ρ Kmh

∂E
∂y

=
ρ Kmh

G

∂
∂η ( J3E ) +

∂
∂ζ ( J2E ) (6.3.24)

   
H3 = ρ Kmv

∂E
∂z

=
ρ Kmv

G

∂E
∂ζ

The potential-kinetic energy conversion term C is given by

   

C =

-g A ρ*KHv

∂θe

∂ζ - ρ*KHv

∂qls

∂ζ for qv ≥ qs or qc > 0

-g ρ*KHv

1
θ

∂θ
∂ζ + 0.61

∂qv

∂ζ for qv < qs or qc = 0

(6.3.25)

in which A is defined as

   

A =
1
q

1 +
1.61 ε Lqv

RT

1 +
ε L2qv

CpRT
2

(6.3.26)

with ε=0.622; qls is the sum of all vapor, liquid and solid water substances,

and θe is the equivalent potential temperature.

In the dissipation term, coefficient Cε has the value

   

Cε =
3.9 at lowest level,

0.93 otherwise.
(6.3.27)

The mixing coefficients Kmh and Kmh are functions of E and the length
scales:

Kmh = 0.1 E1/2 lh and Kmv = 0.1 E1/2 lv (6.3.28)
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For a grid distribution with an aspect ratio on the order of unity, the horizontal
length scale lh and the vertical length scale lv are the same, and are given by
(Deardorff, 1980)

   
l= lh = lv =

∆s for unstable or neutral case,
min ( ∆s, ls) for stable case. (6.3.29)

where ∆s = (∆x ∆y∆z)1/3 and ls is defined as

   
ls = 0.76E1 / 2 g

θ
∂θ
∂z

– 1 / 2

.

For a grid distribution with very large aspect ratio,

lh = ∆sh

and 
   

lv =
∆sv for an unstable or neutral case,

min ( ∆sv, ls) for a stable case. (6.3.30)

where ∆sh = (∆x ∆y)1/2 and ∆sv = ∆z.

The turbulent Prandtl number (Pr = Km/KH ) is given by

   Pr =
Km

KH
= 1

1 +
2lv

∆sv

(6.3.31)

therefore KH becomes available once Km is known.  Note that we plan to add
another option of computing Km and KH according to Schumann (1991) in the
near future.

In (6.3.23), the advection and diffusion terms are similar to those in the
other scalar equations (e.g., Eq.(6.3.26)), they can be calculated in a similar
way. It is worth noting that if E is zero everywhere at a given time, E will
remain zero ever after according to (6.3.23). To remedy this, we check the

local Richardson number Ri =   N2 / Def
2

. If it falls below a critical
Richardson number, turbulence activity is expected and we impose a lower
limit on E, i.e.,

   Kmh = max 0.1 E1 / 2lh, α∆sh
2 ,

Kmv = max 0.1 E1 / 2lv, α∆sv
2 .

(6.3.32)
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where α is a small number (e.g., α=10-6).

6.3.5. Dynamic eddy viscosity model - Germano scheme

In the widely used Smagorinsky closure method discussed in Section
6.3.3, an empirical constant, CS is employed. However, the considerable
variation of CS  evident in real flows, limits the utility of this closure method.
In addition, the computed eddy viscosity does not vanish in laminar flow or at
solid boundaries, as is observed.

In ARPS, we can use an optional dynamic model to convert previously
prescribed SGS model coefficients to self-determined parameters that vary
with time and space (Germano et al., 1991; Wong, 1992; Wong and Lilly,
1994; Wong, 1994). Within a simulation, the SGS representation is locally
and dynamically adjusted to match the statistical structure of the smallest
resolvable eddies.

The dynamic SGS model (Wong and Lilly, 1994) expresses the total

SGS stress tensor, τij ≡ uiuj − uiuj( ) , and temperature flux, τθi ≡ θui − θ ui( )
as:

τij −
δij

3
τkk = −2νt Sij( −

δij
3

Skk ) (6.3.33)

τθi = − νθ
∂θ
∂ xi

, (6.3.34)

where Sij ≡ ∂ui ∂ x j + ∂uj ∂ xi( ) 2  is the resolved strain rate tensor. Here

the overbar represents an averaging on the grid scale, i.e., the smallest
resolved scale. According to Kolmogorov scaling, the eddy viscosity νt  and
eddy diffusivity νθ  can be defined as

νt = C∆4 3, (6.3.35)

νθ = C

Pr
∆4 3, (6.3.36)

where the model coefficient, C , and the eddy Prandtl number, Pr , are

assumed to be independent of the grid-filter width, ∆ ≡ ∆x1∆x2∆x3( )( 1 3) ,

with xi (i = 1,2,3)  being the grid spacing in the ith direction. The model
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coefficients, C  and Pr , are determined by using the dynamic SGS closure
developed by Germano et al. (1991) and modified by Lilly (1992).

The main premise behind dynamic SGS modeling is the use of
information at two different resolved scales to evaluate the model coefficients.
We therefore introduce a second spatial filter, with a larger filter width than
the grid filter, called the "test filter". This filter generates a second set of
resolvable-scale fields (denoted by ^). The test-filtered flow quantities are
obtained by volume-averaging the grid-scale variables over 27 grid cells,
within a test-filtering volume, using a stencil of 3 grid points in each direction.

We also choose the test-filter scale ∆̂ = 2∆ which is consistent with other 3-D
filtering models.

By direct analogy to (6.3.36), the subtest-scale (STS) stress tensor  Tij is

   Tij ≡ uiuj – uiuj  approximated by

Tij − δij Tkk / 3 = − 2 νT Ŝij( − δij Ŝkk / 3) (6.3.37)

where Ŝij ≡ ∂ui ∂x j( + ∂û j ∂xi ) 2 and νT ≈ C∆̂4 3( )  is the STS eddy

viscosity.
 
Similarly, the STS temperature flux

   
Tθi ≡ θui – θui  is given by

Tθi = − νθ
∂θ̂
∂xi

, (6.3.38)

where νθ ≈ C∆̂4 3 / Pr( )  is the STS eddy diffusivity. The fluxes,

τij , τθiTij and Tθi , are unknown quantities because ui uj , θ ui ,  uiuj  and   θui

contain information within the unresolved scale. However, subtracting the
test-scale average of τij  and  τθi  from Tij  and  Tθi , respectively, leads to

L Tij ij ij≡ − τ̂  =  uiuj  − ˆ ˆu ui j , (6.3.39)
and

 R Ti i iθ θ θτ≡ − ˆ =   θui  − ˆ ˆθuj . (6.3.40)

The test window elements Lij  and Rθi  are known quantities because the right

hand side of (6.3.39) and (6.3.40) can be directly evaluated from the resolved
velocity and temperature fields. According to (6.3.36), (6.3.35), (6.3.37), and
(6.3.39),
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L L CMij ij kk ij− ≈δ / 3 2 , (6.3.41)

with Mij ≡ ∆− 4 3 − ∆̂4 3( ) Ŝij − δ ij Ŝkk 3( ) . Since Lij = Lji , (6.3.41) represents

six independent equations with one unknown, C . As (6.3.41) is an
overdetermined system, it is appropriate to use a least squares method to
determine C:

2 4 3∆− C ≈
( − )( − )
−( [ ] ) ( − )

L L S S

S S

ij ij kk ij ij kk

lm lm nn

δ δ

δ

/ ˆ ˆ /

ˆ ˆ ˆ /

3 3

1 3
4 3 2∆ ∆

(6.3.42)

where  indicates local volume averaging, and the summation convention is
in effect.

Similarly,
   

∆−4 34 3 C
Pr  ≈  

Rθ i
∂θ
∂ xj

1 − ∆ ∆∆ ∆
4 34 3 ∂θ

∂ xj

2
. (6.3.43)

One can divide (6.3.42) by (6.3.43) to obtain the eddy Prandtl number Pr .

To close the system for compressible fluids, we need to compute τkk

in (6.3.36). By analogy to the expression introduced by Yoshizawa (1984) ,
we need to compute τkk:

τkk = 2CI∆
4 3 S . (6.3.44)

where S ≡ ( 2SijSij
1 2 )  is a measurement of the resolved strain rate tensor Sij .

Making use of the trace of (6.3.39) with the model of (6.3.44) for Tkk  and
τkk , we obtain

   2∆4 34 3 CI ≈ Lkk

∆ ∆∆ ∆
4 34 3

− 1 S

. (6.3.45)

According to (6.3.39), Lkk  in (6.3.45) is non-negative since the average of the
square of a quantity is never less than the square of its average. It follows that
CI ≥ 0  and thus a realizability condition, τkk ≥ 0, is satisfied.
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Eqs. (6.3.36)-(6.3.36), and (6.3.42)-(6.3.45) form a closed SGS system

with the filter width ratio ∆̂ ∆  being the only input parameter. The

denominator of (6.3.42) can vanish only if each component of Ŝij  vanishes

separately. In that case, the numerator also vanishes. A similar conclusion
applies to (6.3.43). Moreover, at a solid boundary or for laminar flow, Lij

vanishes and according to (6.3.42)-(6.3.45), all the SGS model coefficients
also vanish.

6.4. Computational Mixing / Numerical Smoothing ______________

The subgrid scale mixing provides smoothing related to turbulent pro-
cesses only in the region where Km > 0. In stable regions where Km is zero,
there is no turbulent mixing. A small amount of background (computational)
mixing is desirable to discourage the growth of nonlinear instabilities and to
suppress small scale computational noise. This can be achieved by either
adding a constant to the coefficient of the physical (subgrid scale turbulence)
mixing, or by introducing an additional mixing / smoothing term on the right
hand side of the conservation equations (except for pressure). We refer to the
latter as computational mixing.

To ensure computational stability, all mixing /  damping /  diffusion
terms are evaluated at the previous time level of the time integration. This
makes the scheme forward in time with respect to the mixing terms. It is
important to note that the time integration of the terms is conditionally stable.
Under certain circumstances, the constraint on the time step size imposed by
these terms can be more severe that by other processes, such as gravity wave
propagation and advection.

In the following subsections, several optional computational mixing
formulations as well as upper level Rayleigh damping formulations are
discussed.

6.4.1. Constant background mixing in physical space

This type of mixing is included by adding a user-specified constant,
KmB, to the mixing coefficient, Km, that is calculated in the previous section.
The total mixing on scalars will be KΗ + KΗΒ = (Km + KmB)/Pr. Because this
mixing operates on the total fields, it tends to diffuse the environmental and
perturbation fields’ shear and stratification. This property may not be desirable
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in many cases. The choice of the background mixing coefficient follows a
guideline similar to that for the second-order computational mixing.

6.4.2. Numerical smoothing in the computational space

This type of computational smoothing is designed to remove the small
scale (mainly grid scale) noise of computational origin (e.g., advection-
induced overshoots and undershoots, energy cascade towards small scales due
to nonlinear instability). It is therefore designed to operate along computa-
tional grid lines (ξ, η and ζ) instead of the physical coordinate lines (x, y and
z). To avoid the unwanted effect of smoothing the base-state fields (thus
destroying the environmental stratification), the smoothing is formulated to
operate on the perturbations (u', v' , w , θ ' and q'ψ) only. Therefore, this
smoothing tends to relax the total fields towards the base-state values.
Because of its non-physical origin, the computational smoothing should be as
small as possible in order to avoid affecting the physical solution.

ARPS offers second- and fourth-order computational mixing. Fourth
order mixing is preferred because it damps out short wavelength noise more
selectively than the second order mixing. Theoretically, the higher the order of
smoothing, the more strongly the short wavelengths are damped. In practice,
however, high order smoothing is more difficult to implement, especially near
the boundaries.

With the total mixing divided into separate parts, the conservation
equations may be written like this:

   ∂( ρ*φ )
∂t

= G ( Dφ1 + Dφ2 + Dφ3) + ... (6.4.1)

where Dφ1 represents the subgrid scale turbulent mixing, Dφ2 the second
and/or fourth order computational mixing and Dφ3 the upper-level Rayleigh

type damping. Here φ is one of u, v, w, θ , or one of the water or ice variables.

a) Second order computational mixing

In ARPS, the second order mixing has the following form:
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G Dφ2 = KH2
∂2 (ρφ′)

∂ξ2 +
∂2 (ρφ′)

∂η2 + KV2
∂2(ρφ′)

∂ζ2 (6.4.2)

where   φ′ = φ – φ  is the perturbation of φ from its base-state value. KH2 and
KV2 are the horizontal and vertical mixing coefficients, respectively. Equation
(6.4.2) contains conservative terms which operate along the computational
rather than the physical (Cartesian) grid lines.

To discretize (6.4.2) in the finite difference form, it is convenient to
define a finite difference operator

   δ s
2φ =

φ i + 1 – 2φ i + φ i – 1

∆ s2 (6.4.3)

where s denotes one of the independent variables ξ , η  or ζ . The finite-
differenced formulations of Eq. (6.4.2) for u, v, w and scalar S become

   
G Du2 = KH2 δξ

2(ρξ
u′) + δη

2(ρξ
u′) + KV2 δζ

2(ρξ
u′)

   
G Dv2 = KH2 δξ

2(ρη
v′) + δη

2(ρη
v′) + KV2 δζ

2(ρη
v′)

   
G Dw2 = KH2 δξ

2(ρζ
w) + δη

2(ρζ
w) + KV2 δζ

2(ρζ
w) (6.4.4)

   
G DS2 = KH2 δξ

2(ρS′) + δη
2(ρS′) + KV2 δζ

2(ρS′) .

These terms are evaluated at the interior points of the model domain
without application of boundary conditions. The horizontal mixing coefficien,t

KH2 , equals    αH2 ∆H
2 /∆t , where    αH2  is a non-dimensional coefficient; ∆Η is the

horizontal grid scale taken as (∆x∆y)1/2. Similarly,    Kv2 = αv2 ∆v
2 /∆t , where    αv2

is a non-dimensional coefficient and    ∆v = ∆ζ . For computational stability,

   αH2  and    αv2  must be less than or equal to 1/8.  The dimensional (1/s) ratios

KH2 /   ∆H
2  and Kv2 /   ∆v

2  are specified by the user in theinput file.
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b) Fourth order computational mixing

The fourth order computational mixing terms have the form

   
G Dφ 2 = - KH 4

∂4(ρφ′)
∂ξ4 +

∂4(ρφ′)
∂η4 – KV4

∂4(ρφ′)
∂ζ4 . (6.4.5)

The finite differenced formulations for u , v, w  and any scalar, S ,
(representing θ and the water and ice categories) are

   
G Du2 = - KH4 δξ

2 δξ
2(ρξ

u′ ) + δη
2 δη

2( ρξ
u′ ) – KV4 δζ

2 δζ
2 ( ρξ

u′ ) ,

   
G Dv2 = - KH4 δξ

2 δξ
2(ρη

v′ ) + δη
2 δη

2( ρη
v′ ) – KV4 δζ

2 δζ
2 ( ρη

v ′ ) ,

   
G Dw2 = - KH4 δξ

2 δξ
2(ρζ

w ) + δη
2 δη

2( ρζ
w ) – KV4 δζ

2 δζ
2 ( ρζ

w ) ,

   
G DS2 = - KH4 δξ

2 δξ
2(ρS' ) + δη

2 δη
2( ρS' ) – KV4 δζ

2 δζ
2 ( ρS' ) . (6.4.6)

The fourth-order terms given above cannot be directly evaluated at the
first grid point inside the boundary. Therefore, either a second order substitute
or prespecified boundary condition must be applied. The former may
introduce erroneous sources or sinks at the transition between the two
schemes. In ARPS, we overcome this difficulty by making additional

assumptions for the intermediate terms such as    δξ
2(ρξ

u′) . In this way, the

mixing terms can be evaluated up to the first grid point inside the boundary,
and the formulation retains its conservative property. In the case of symmetric
or periodic boundary conditions, however, no artificial assumptions are
needed.

The fourth-order mixing terms given in (6.4.6) are computed in two
steps. First, the terms in the squared brackets are evaluated at the interior grid
points of the model domain, and their values at the boundaries are set based on
additional assumptions. The mixing terms are then calculated from these
intermediate terms, up to the first grid point inside the boundaries. Splitting
the calculations into two steps also results in modular calculations, where each
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path through the operator involves only three grid points in each direction.
This approach follows the massively parallel implementation of the code.

Denoting

D2XIU =     δξ
2(ρξ

u′), D2ETAU =     δη
2(ρξu′),

D2XIV =     δξ
2(ρηv′), D2ETAV =     δη

2(ρηv′),

D2XIW =    δξ
2(ρζ

w′), D2ETAW =     δη
2(ρζ

w′),      
(6.4.7)

D2XIS =    δξ
2(ρS′), D2ETAS =     δη

2(ρS′),

we set the boundary conditions for the second derivatives for the symmetric
(wall) boundaries as

D2XIU(1,j,k) = - D2XIU(3,j,k) for all j and k;
D2XIU(nx,j,k) = - D2XIU(nx-2,j,k) for all j and k;
D2ETAU(i,1,k) =   D2ETAU(i,2,k) for all i and k;
D2ETAU(i,ny-1,k) =   D2ETAU(i,ny-2,k) for all i and k.

D2XIV(1,j,k) =   D2XIV(2,j,k) for all j and k;
D2XIV(nx-1,j,k) =   D2XIV(nx-2,j,k) for all j and k;
D2ETAV(i,1,k) = - D2ETAV(i,3,k) for all i and k;
D2ETAV(i,ny,k) = - D2ETAV(i,ny-2,k) for all i and k. (6.4.8)

D2XIW(1,j,k) =  D2XIW(2,j,k) for all j and k;
D2XIW(nx-1,j,k) =  D2XIW(nx-2,j,k) for all j and k;
D2ETAW(i,1,k) =  D2ETAW(i,2,k) for all i and k;
D2ETAW(i,ny-1,k) =  D2ETAW(i,ny-2,k) for all i and k,

and for the periodic boundaries:

D2XIU(1,j,k) =  D2XIU(nx-2,j,k) for all j and k;
D2XIU(nx,j,k) =  D2XIU(3,j,k) for all j and k;
D2ETAU(i,1,k) =  D2ETAU(i,ny-2,k) for all i and k;
D2ETAU(i,ny-1,k) =  D2ETAU(i,2,k) for all i and k;

D2XIV(1,j,k) =  D2XIV(nx-2,j,k) for all j and k;
D2XIV(nx-1,j,k) =  D2XIV(2,j,k) for all j and k;
D2ETAV(i,1,k) =  D2ETAV(i,ny-2,k) for all i and k;
D2ETAV(i,ny,k) =  D2ETAV(i,3,k) for all i and k; (6.4.9)

D2XIW(1,j,k) =  D2XIW(nx-2,j,k) for all j and k;
D2XIW(nx-1,j,k) =  D2XIW(2,j,k) for all j and k;
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D2ETAW(i,1,k) =  D2ETAW(i,ny-2,k) for all i and k;
D2ETAW(i,ny-1,k) =  D2ETAW(i,2,k) for all i and k.

The conditions on the lateral boundaries for a scalar S are exactly the
same as those for w.

For zero gradient and open boundary conditions, we simply set the
normal gradient of the second order terms to zero at the boundaries, i.e.

D2XIU(1,j,k) =  D2XIU(2,j,k) for all j and k;
D2XIU(nx,j,k) =  D2XIU(nx-1,j,k) for all j and k;
D2ETAU(i,1,k) =  D2ETAU(i,2,k) for all i and k;
D2ETAU(i,ny-1,k) =  D2ETAU(i,ny-2,k) for all i and k;

D2XIV(1,j,k) =  D2XIV(2,j,k) for all j and k;
D2XIV(nx-1,j,k) =  D2XIV(nx-2,j,k) for all j and k;
D2ETAV(i,1,k) =  D2ETAV(i,2,k) for all i and k;
D2ETAV(i,ny,k) =  D2ETAV(i,ny-1,k) for all i and k; (6.4.10)

D2XIW(1,j,k) =  D2XIW(2,j,k) for all j and k;
D2XIW(nx-1,j,k) =  D2XIW(nx-2,j,k) for all j and k;
D2ETAW(i,1,k) =  D2ETAW(i,2,k) for all i and k;
D2ETAW(i,ny-1,k) =  D2ETAW(i,ny-2,k) for all i and k;

D2XIS(1,j,k) =  D2XIS(2,j,k) for all j and k;
D2XIS(nx-1,j,k) =  D2XIS(nx-2,j,k) for all j and k;
D2ETAS(i,1,k) =  D2ETAS(i,2,k) for all i and k;
D2ETAS(i,ny-1,k) =  D2ETAS(i,ny-2,k) f for all i and k.

The vertical mixing terms are treated in a similar manner.

c) Assigning the mixing coefficients

The fourth order horizontal smoothing coefficient KH4 can be
expressed as αH4∆Η4/∆t. Here αH4 is the non-dimensional coefficient and ∆Η
the horizontal grid scale taken as (∆x ∆y)1/2. ∆t is the large time step size. The
vertical coefficient KV4  equals α V4∆V

4/∆t. A value of 0.001 is typically used
for α . The same value of α  for the second order mixing produces a similar
amount of damping on the grid scale noises. Again, it is important to note, that
the mixing terms using forward-in-time integration schemes are only
conditionally stable. Excessively large mixing coefficients will lead to
computational instability. A discussion on the computational stability of
diffusive formulations is presented by Pielke (1984).
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6.4.3. Upper boundary damping layer

Enhanced damping is can be optionally included in a layer near the top
boundary in order to absorb upward propagating wave disturbances and to
eliminate wave reflection at the top boundary. Preventing wave reflection at
the top boundary is especially important in the studies of terrain-induced
flows.

Rayleigh damping adds an additional term to the RHS of the
conservation equations of momentum, potential temperature and water and ice
quantities. It damps the perturbations from the base state. These terms are
represented by Dφ3  in Eq. (6.4.1), and have the form

   G Dφ3 = - RD(z) ρ*(φ - φ)
(6.4.11)

where RD is the vertical profile of the inverse damping time scale, and φ is u,

v, w, θ or a water substance.

ARPS applies the profile of RD suggested by Klemp and Lilly (1978)
and has the form

   
RD =

0.0 for z < zD

αR{ 1 – cos [π(z – zD) / (zT – zD)]} / 2 for z ≥ zD

(6.4.12)

where zB is the height of the bottom of the damping layer and zT the height of
the model top boundary. The depth of the damping layer (zT-zB) depends on
the type of problem being considered. In general, a layer depth 1/3 of the total
domain depth or one vertical wavelength is recommended. The damping layer
should be located above the part of model domain where the solution is of
interest. αR

-1 is the e-folding time scale of damping at z=zT, and a value on the
order of 10 to 50 big time steps is recommended.
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6.5. Grid Structure and Boundary Conditions __________________

6.5.1. Introduction

In a regional atmospheric model, only the lower boundary is physical.
The boundaries at the top and sides are usually artificial. ARPS permits the
user to choose different types of boundary conditions for the lateral, top and
bottom boundaries.

Five types of lateral boundary conditions are available in ARPS: rigid
wall, periodic, zero normal gradient, wave-radiating open boundary, and
externally specified boundary conditions. All five options can be specified
independently for each lateral boundary. Three types of boundary conditions
are available at the top and bottom boundaries: rigid top lid (impermeable
ground), periodic, and zero-normal gradient. Wave reflection from the rigid
top boundary can be suppressed by use of a Rayleigh damping layer near the
top boundary (see Section 6.4.3).

To implement the boundary conditions, extra grid points are defined
outside the physical boundary of the model domain. These extra points are
often referred to as the “fake” points or zones. The graphical relationship
between the physical domain and the boundary points is shown in Figure 6.2a
for the ξ - η  (x - y) cross-section and in Fig. 6.2b for the ξ − ζ (x - z) cross-
section of the model domain. In the figure, the physical boundary is shown as
the thick line and the physical domain (model interior domain) is shaded. The
fake points outside the physical domain constitute the computational
boundaries, and the locations of these boundaries vary with the variables due
to grid staggering. For example, the computational boundaries of horizontal
velocity u are at ξ = -∆ξ and ξ = Lξ + ∆ξ in the ξ direction, and at η = -∆η/2

and η = Lη + ∆η/2 in the η direction. On this grid, second order advection and
mixing terms can be readily calculated in the interior domain for all
prognostic variables.

In Figure 6.2, the physical boundary is located at the grid points of the
normal velocity components (e.g., the physical boundary on the west side
coincides with the grid points of the u-velocity). The normal velocity
components are defined up to one grid interval outside the physical boundary,
and all the other variables are defined up to half a grid interval outside.
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Figure 6.2. The ξ−η  plane of the model grid. 6.2a shows the variable arrangement
relative to the physical boundary. S represents the scalar variables. The layout of the grid in

the ξ-ζ plane is similar (6.2b), except that η and v are replaced by ζ and w.
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In ARPS code, all three dimensional arrays have the dimensions (1:nx, 1:ny,
1:nz). For certain variables, the elements at i=nx, or j=ny or k=nz are
redundant. More specifically,

• u is defined from (1:nx, 1:ny-1, 1:nz-1) in the index space, with
computational boundaries at i=1 and nx in the ξ direction, at j=1 and

ny-1 in the η  direction, and at k=1 and nz-1 in the ζ direction.

• v is defined from (1:nx-1, 1:ny, 1:nz-1) in the index space, with
computational boundaries at i=1 and nx-1 in the ξ direction, at j=1 and

ny in the η  direction, and at k=1 and nz-1 in the ζ direction.

• w  is defined from (1:nx-1, 1:ny-1, 1:nz) in the index space, with
computational boundaries at i=1 and nx-1 in the ξ direction, at j=1 and

ny-1 in the η  direction, and at  k=1 and nz in the ζ direction.

• The scalars (p, θ, q, etc.) are defined from (1:nx-1, 1:ny-1, 1:nz-1) in
the index space, with computational boundaries at i=1 and nx-1 in the
ξ direction, at j=1 and ny-1 in the η direction, and at  k=1 and nz-1 in

the ζ direction.

On ARPS grid, the scalar point is located at the center of a 3-D grid
cell. The normal velocity components are located on the six sides of this cell.
The index range for the cells inside the physical boundary are from i=2 to nx-
2, j=2 to ny-2 and k=2 to nz-2 in the three coordinate directions, respectively.
These index bounds should be used if a volume integral of the entire domain
is to be calculated, with the velocity components averaged to the cell centers
before an integral operation.

 6.5.2. Lateral boundary conditions

Five options, to be discussed below, are available for the lateral
boundary condition:

1. Wall (or mirror) boundary condition;
2. Periodic boundary condition;
3. Zero-normal gradient condition;
4. Open (radiative) boundary condition;
5. Externally specified boundary condition.
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a) Wall or mirror condition

For a free-slip rigid wall, a mirror type boundary condition is imposed.
For illustration purposes, we consider a two dimensional case, and look at the
left boundary of the ξ−ζ slab at ξ = 0 (Figure 6.3). The free-slip condition

dictates that w(ξ = -∆ξ / 2) = w(ξ = ∆ξ / 2). A rigid wall requires u(ξ = 0) =0.

By taking a ξ-derivative of the incompressible mass continuity equation, so

that ∂[∂u /∂ξ+∂w/∂ζ]/∂ξ = 0, and making use of the free-slip condition, ∂w/∂ξ
= 0, we have ∂2u /∂ξ2 = 0. From ∂2u /∂ξ 2 = 0 and u = 0 at ξ = 0, we arrive at

u(ξ = -∆ξ) = - u(ξ = ∆ξ) , which is the mirror boundary condition.

 

u

w

w w

w

u

ξ = 0
ξ

ζ

u

i = 1 2
2

 3

S S

1i =

Figure 6.3. Illustration of mirror boundary condition. The flow pattern is 

symmetric about the solid wall located at ξ = 0.

Given that u (ξ = 0) =0 and all the other variables are symmetric about
the wall, the advection and mixing terms are zero at the lateral boundary. The
pressure gradient across the boundary must also be zero for the normal
velocity equation to be valid at the boundary. Therefore, for all scalars, the
symmetric condition is applied, i.e. ∂S/∂ξ = 0 at ξ = 0.

In the model, the mirror boundary condition for the lateral boundaries
are implemented as follows:

At the ξ boundaries:

u(1,j,k) =-u(3,j,k) and u(nx ,j,k) =-u(nx-2,j,k) for all j,k.
v(1,j,k) = v(2,j,k) and v(nx-1,j,k) = v(nx-2,j,k) for all j,k.
Wc(1,j,k) = Wc(2,j,k) and Wc(nx-1,j,k) = Wc(nx-2,j,k) for all j,k.
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S(1,j,k) = S(2,j,k) and S(nx-1,j,k) = S(nx-2,j,k) for all j,k.
(6.5.1)

and the η boundaries:

u(i,1,k) = u(i,2,k) and u(i,ny-1,k) = u(i,ny-2,k) for all i,k.
v(i,1,k) =-v(i,3,k) and v(i,ny ,k) =-v(i,ny-2,k) for all i,k.
Wc(i,1,k) = Wc(i,2,k) and Wc(i,ny-1,k) = Wc(i,ny-2,k) for all i,k.
S(i,1,k) = S(i,2,k) and S(i,ny-1,k) = S(i,ny-2,k) for all i,k.

(6.5.2)

where S represents a scalar, e.g., pressure, potential temperature or a water
quantity.

For the contravariant velocity Wc, the mirror type boundary condition
is applied.  The Cartesian velocity w is then derived from u, v and Wc.

After these boundary values are set, the interior values can be
computed by the prognostic equations when second order spacial differencing
is applied. When a high order scheme is used, special boundary treatment is
usually required. The normal velocity components at the physical boundaries
are considered to be interior and are explicitly predicted by their equations.
The predicted u at ξ=0 and Lξ , and v at η=0 and Lη, should be zero.

b) Periodic boundary condition

The periodic boundary condition assumes that the solution outside the
computational domain replicates itself indefinitely. The solution at a distance
d to the left of the computational domain boundary equals the solution a
distance d to the left of the right boundary.

In ARPS, the periodic boundary conditions are implemented as
follows:

At the ξ boundaries:

u(1,j,k)=u(nx-2,j,k), u(nx ,j,k)=u(3,j,k)  for all j,k.
v(1,j,k)=v(nx-2,j,k), v(nx-1,j,k)=v(2,j,k) for all j,k.
w(1,j,k)=w(nx-2,j,k), w(nx-1,j,k)=w(2,j,k) for all j,k.
S(1,j,k)=S(nx-2,j,k), S(nx-1,j,k)=S(2,j,k) for all j,k.
wcont(1,j,k)=wcont(nx-2,j,k) and
wcont(nx-1,j,k)=wcont(2,j,k) for all j,k. (6.5.3)
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and at the η boundaries:

u(i,1,k)=u(i,ny-2,k), u(i,ny-1,k)=u(i,2,k) for all i,k.
v(i,1,k)=v(i,ny-2,k), v(i,ny ,k)=v(i,3,k)  for all i,k.
w(i,1,k)=w(i,ny-2,k), w(i,ny-1,k)=w(i,2,k) for all i,k. 
S(i,1,k)=S(i,ny-2,k), S(i,ny-1,k)=S(i,2,k) for all i,k.
wcont(i,1,k)=wcont(i,ny-2,k) and
wcont(i,ny-1,k)=wcont(i,2,k) for all i,k. (6.5.4)

The periodic boundary conditions are directly applied to both w and Wc.

As in the case of wall boundary condition, the interior values are
predicted by second order finite differencing schemes, the boundary
conditions having been set. When a higher order advective scheme is used,
special boundary treatment is required. The normal velocity components at the
physical boundaries are considered to be interior and are explicitly predicted
by their equations. The predicted u at ξ=0 should equal u at ξ=Lξ  and v at

η=0 equals v at η=Lη  in the periodic case.

c) Zero gradient boundary condition

For this type of boundary condition, the gradients of all variables at the
lateral boundaries are set to zero. The expressions are similar to those given in
(6.5.1) and (6.5.2) for the mirror boundary condition, except that all minus
signs on the right hand side of the equations are changed to positive signs.

d) Wave-radiation open boundary condition

Wave radiation boundary conditions are designed to allow waves in
the interior of the model domain to pass out freely through the boundary with
minimal reflection. Radiation boundary conditions typically employ a
simplified wave propagation equation to determine the time rate of change of
the predicted variables at the lateral boundaries. Based on the study by Oliger
and Sundstrom (1976) on the well-posedness of boundary conditions, the
wave equation is applied only to the normal components of velocity at the
boundaries in ARPS.  Other variables, i.e., the components of velocity parallel
to the boundary, the potential temperature and water variables are predicted on
the boundary using the same prognostic equations as used in the interior.
However, at the lateral boundaries, upstream advection replaces the centered
advection on the boundary. The advection at the inflow boundary is set to
zero, which is based on the assumption that no gradient exists in the field
outside the boundary. The turbulent mixing terms at the boundary are set to
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the values of the adjacent interior point. The second and fourth order
computational mixing are computed in the same way as in the interior, but
with the assumption that the normal gradient in the fields outside the boundary
is zero.

Several variations of the radiation boundary condition are available.
Orlanski (1976) proposed a type in which the prognostic equation for a
variable ψ is replaced by an one dimensional wave equation

   ∂ψ
∂t

+ c
∂ψ
∂ξ = 0 (6.5.5)

where c is a phase speed of wave signal propagation, which is estimated
locally using the same equation applied at one time step earlier and one grid
point interior of the boundary. Miller and Thorpe (1981) discussed a number
of variations of the original Orlanski formulation. Durran and Klemp (1983)
applied a vertical average on the locally estimated c and used the averaged c in
their mountain flow simulations.

Another variation of the radiation condition is to use the wave equation

   ∂ψ
∂t

+ (u+C)
∂ψ
∂ξ = 0

(6.5.6)

where u is the flow speed normal to the boundary, and C is a constant phase
speed, representing that of the dominant wave signals. This scheme is
suggested by Klemp and Wilhelmson (1978). Klemp and Wilhelmson (1978)
and others (e.g., Tripoli and Cotton, 1980) implemented the open boundary
condition using (6.5.6) in the large time step of the split-explicit time
integration system. The C is regarded as the typical internal gravity wave
propagation speed. Theory and experiments (e.g., Lilly, 1980; Clark, 1979)
show that an over-estimation of C is better than a underestimation of the same
amount. Therefore, C is usually taken as the fastest propagating gravity wave
speed, a typical estimation is HN/π, where H is the domain depth and N the
representative Brunt-Väisälä frequency. A constant value between 30 and 45
m/s is often chosen for storm simulations (e.g., Tripoli and Cotton, 1980;
Clark, 1979).

Based on many tests on the above variations of radiation boundary
conditions, ARPS includes four radiation boundary condition options. These
are:

rbcopt = 1: Klemp-Wilhelmson formulation with Eq. (6.5.6) applied on the
small time step;
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rbcopt = 2:   Klemp-Wilhelmson formulation with Eq. (6.5.6) applied on the
large time step;

rbcopt  = 3: Orlanski formulation based on Eq. (6.5.5). With this scheme, c
is computed on the big time step and Eq. (6.5.5) is applied on
the small time step;

rbcopt = 4: Orlanski formulation with additional vertical averaging of the
calculated c after Durran and Klemp (1983).

To illustrate the Klemp-Wilhelmson condition on the small time step
(rbcopt=1), Eq. (6.5.6) is applied to u at the x boundary (note: the same
analysis can be performed for v on the y boundary).

The wave equation (6.5.6) applied to u is

∂u

∂t
+ (u + C)

∂u

∂x
= 0, (6.5.7)

Equation (6.5.7) is discretized using forward-in-time and upstream-in-
space difference schemes on the small time step.

For the right boundary, C > 0, we have

   unx
τ +∆τ − unx

τ

∆τ = − (unx
τ + C)

unx
τ − unx−1

τ

∆ x
,   if u + C > 0 (6.5.8)

   unx
τ +∆τ − unx

τ

∆τ = − γ unx
τ + C

unx − unx
τ

∆ x
= − γ unx

τ + C
unx

τ − unx

∆x
,

   if u + C ≤ 0 (6.5.9)

where subscript nx is the grid point index at the right boundary for u. When u
+ C > 0, upstream advection gives (6.5.8). When u + C ≤ 0, (6.5.9) is obtained
by discretizing (6.5.7) using the forward-in-time, upstream-in-space difference
scheme, with the assumption that u outside the boundary has the base-state
value if γ = 1, and u outside the boundary equals u at the boundary (zero

gradient) if γ = 0. For 0 < γ < 1, the boundary u is relaxed towards the base
state value using a coefficient that is proportional to |u+C| at the boundary. In
the original KW condition, γ is zero. In that case, the boundary value remains
unchanged in time when u + C is directed into the model domain.

The corresponding equations for the left boundary are:

   u1
τ +∆τ − u1

τ

∆τ = − (u1
τ + C)

u2
τ − u1

τ

∆ x
,   if u + C < 0 (6.5.10)
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   u1
τ +∆τ − u1

τ

∆τ = −γ u1
τ + C

u1
τ − u1

∆ x
= −γ u1

τ + C
u1

τ − u1

∆ x
,

 if u+C≥0. (6.5.11)

where subscript 1 is the grid point index at the left boundary for u. In the
model code, γ = rlxlbc and |C| = c_phase, both assigned in the input file (see
Chapter 4). These calculations can be found in subroutine BKWSMLDT in
file setbdt3d.f.

For rbcopt =  2, the Klemp and Wilhelmson (1978) condition is
applied to the large time step. Again, the normal velocity component is
predicted by a simplified wave equation. We show this for the x boundary as
an example:

   ∂u
∂t

+ (u + C)
∂u
∂x

= 0 (6.5.12)

where C is the typical speed of internal gravity waves and is usually chosen to
be the fastest outward propagating gravity wave speed in the model domain.

Equation (6.5.12) is discretized using centered-in-time and upstream-
in-space difference scheme. The time differencing is consistent with that used
for the model interior.

For the right boundary, C>0, we have

u u

t
u C

u u

x
nx
t t

nx
t t

nx
t nx

t
nx
t+ −

−− = − + −∆ ∆

∆ ∆2
1 ( ) if u + C > 0 (6.5.13)

u u

t
u C

u u

x
u C

u u

x
nx
t t

nx
t t

nx
t nx nx

t t

nx
t nx

t t
nx

+ − − −− = − +( ) −
= − +

−∆ ∆ ∆ ∆

∆ ∆ ∆2
γ γ

if u + C  ≤ 0 (6.5.14)

where subscript nx is the grid point index at the right boundary for u. The
spatial differencing is the same as for option one, but for time, leap-frog
scheme is used here reather than the forward scheme.

For completeness, the corresponding equations for the left boundary
are:

u u

t
u C

u u

x

t t t t
t

t t
1 1

1
2 1

2

+ −− = − + −∆ ∆

∆ ∆
 ( ) , if u+C<0 (6.5.15)

u u

t
u C

u u

x
u C

u u

x

t t t t
t

t t
t

t t
1 1

1
1 1

1
1 1

2

+ − − −− = − +( ) −
= − +

−∆ ∆ ∆ ∆

∆ ∆ ∆
γ γ ,

if u+C≥0. (6.5.16)
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where subscript 1 is the grid point index at the left boundary for u.  In the
model code, γ = rlxlbc and |C| = c_phase. This part of calculations can be
found in subroutine BDTU in file setbdt3d.f.

For the Orlanski type boundary condition (rbcopt = 3), c is determined
locally and is therefore spatially and temporarily varying. The estimated phase
speed ĉ is obtained from (6.5.5) and applied to u and v.  For the u velocity,

ĉξ = [(u 
n-2
2jk - u 

n
2jk) / (- u 

n
2jk- u 

n-2
2jk+ 2 u 

n-1
3jk)] * ∆ξ/∆t (6.5.17)

at the west boundary, and

ĉξ = [(u 
n-2
nx-1jk - u 

n
nx-1jk)/(u 

n
nx-1jk+ u 

n-2
nx-1jk-2 u 

n-1
nx-2jk)] *∆ξ/∆t  (6.5.18)

at the east boundary.

For v,

ĉη = [(v 
n-2
i2k - v 

n
i2k)/(- v 

n
i2k- v 

n-2
i2k+ 2 v 

n-1
i3k)] * ∆η/∆t        (6.5.19)

at the south boundary, and

ĉη = [(v 
n-2
iny-1k - v 

n
i ny-1k) / (v 

n
iny-1k+ v 

n-1
iny-1k- 2 v 

n-1
iny-2k) ] *∆η/∆t    (6.5.20)

at the north boundary.

The estimated phase speed is subject to the limit of maximum Courant
number of one. It is then used in Eq. (6.5.5) to calculate the time tendencies
for u at the east and west boundaries and v at the north and south boundaries.

The fourth radiation boundary condition option (r b c o p t   = 4)
incorporates vertical averaging on the Orlanski computed phase speeds
following Durran and Klemp (1983).  The outward directed phase speeds are
averaged over the vertical extent of the model with the inward directed phase
speed set to zero before averaging. The average phase speed is then applied to
Eq. (6.5.5) to determine the time tendencies at the boundaries.  This technique
was found to improve the results in tests with linear mountain waves, a falling
cold bubble and for gravity wave propagation cases.  The mass field was
better behaved compared to the Orlanski boundary condition.

All other variables except the normal velocity components are solved
from their prognostic equations directly. All forcing terms in these equations
can be evaluated at the boundaries without any additional assumptions, except
for the normal advection and the normal mixing terms, described previously.
At the boundary, zero gradient is assumed for the turbulent mixing in the
normal direction. For the computational mixing, the mixed fields are assumed
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to have zero gradients outside the model domain. For the advection terms,
upstream differencing is used when the flow is directed into the model
domain. When the flow is directed outwards, the same relaxation procedure
used in (6.5.9) and (6.5.11) is applied, with an adjustable relaxation
coefficient γ built into the formulation. Again, for γ = 0, zero gradient is
assumed for the advected field outside the boundary, while for γ = 1, the base
state value is advected in. For 0 < γ < 1, the boundary value is relaxed towards
the base-state value.

e) Externally specified boundary condition

In this case,  the boundary values are obtained from a user-provided
external data set, or from a user-specified solution. Therefore, we set

u(1,j,k) and u(nx ,j,k) for all j,k,

u(i,1,k) and u(i,ny-1,k) for all i,k,

v(i,1,k) and v(i,ny ,k) for all i,k,

v(1,j,k) and v(nx-1,j,k) for all j,k,

w(1,j,k) and w(nx-1,j,k) for all j,k,

w(i,1,k) and w(i,ny-1,k) for all i,k,

S(1,j,k) and S(nx-1,j,k) for all j,k,

S(i,1,k) and S(i,ny-1,k) for all i,k.

to externally specified values. Wc is diagnosed from u, v and w. Most of the
time, enhanced relaxation and damping are required in a zone near the lateral
boundaries, in order to reduce the inconsistencies between the model solution
and the external data. The amount of relaxation is user-specified through a
parameter in the input file. Additional information on the externally forced
boundary option can be found in Section 8.6.

6.5.3. Top and bottom boundary conditions

The vertical cross-section of the model grid is similar to that shown for
the ξ -η  plane in Figure 6.2. For a corresponding figure for the ξ−ζ cross-

section, one replaces η, NY, v and j by ζ, NZ, w and k.

In the vertical direction, u, v and scalars are defined from k = 1, nz - 1.
The time integration is performed from k = 2 to nz - 2 and their boundary
conditions are specified at k = 1 and nz - 1. w is defined from k = 1, nz and its
boundary conditions are specified at k = 1 and nz. In the case of a rigid top lid
and solid ground, w is also specified at k = nz - 1 and at k = 2, respectively.

ARPS assumes the model top boundary is flat, and is at height z = ζ =
H. The contravariant velocity Wc, defined as the component of velocity vector
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normal to ζ = constant surface, vanishes at the lid. The Cartesian vertical

velocity w, defined as w = u∂H/∂ξ + v∂H/∂η + Wc∂H/∂ζ also vanishes there.

Given that w = Wc=0 at z = H, the mirror free-slip boundary condition
requires

∂u/∂ζ = ∂v/∂ζ =  ∂S/∂ζ = 0  at  ζ = Η,
and Wc (ζ = H+∆ζ)  =  - Wc (ζ = H-∆ζ). (6.5.21)

In the code, they are:

wcont(i,j,nz-1)=0.0 for all i,j,

wcont(i,j,nz)=-wcont(i,j,nz-2) for all i,j,

u(i,j,nz-1)=u(i,j,nz-2) for all i,j,

v(i,j,nz-1)=v(i,j,nz-2) for all i,j,

S(i,j,nz-1)=S(i,j,nz-2) for all i,j.

The bottom boundary is at z = h(x,y), where h is the terrain height.
When the terrain is not flat, vertical velocity will not be zero at the ground.
The terrain-following coordinate transformation used by ARPS ensures that
the computational grid line (ζ = 0) at the lower boundary follows the terrain.

At the non-penetrative lower boundary, the definition of Wc requires
that

Wc = 0  at  ζ = 0  or  z = h. (6.5.22)

According to the definition of w, we have

w = u∂h/∂ξ + v∂h/∂η   at  ζ = 0  or  z = h (6.5.23)

which can also be obtained by applying the zero normal velocity condition at
the ground. The mirror type boundary condition based on mass continuity
gives:

Wc(ζ = -∆ζ )  = -Wc(ζ + ∆ζ ).

where w(ζ = -∆ζ  ) can be derived from u, v and Wc. In ARPS, these conditions
appear as:

u (i,j,1) = u(i,j,2),
v (i,j,1) = v(i,j,2),
wcont(i,j,2)= 0 ,
w (i,j,2) = u∂h/∂x + v∂h/∂h,



Chapter 6: Theoretical Formulation

CAPS - ARPS Version 4.0 165

S (i,j,1) = S(i,j,2).

Here, S stands for all scalar variables except for p'. For p', an extrapolated
boundary condition is used: p' (i, j, 1) = -p' (i, j, 3) + 2p' (i, j, 2).

In the vertical direction, the time integration is carried out from k = 2,
nz - 2 for u, v, and all scalars, and from k = 3 to nz - 2 for w..

Apart from the rigid top and bottom boundary conditions, periodic and
zero gradient boundary conditions are also available at the vertical boundaries,
except when the vertically implicit w and p solver is used. The implementa-
tions are straightforward.

6.5.4. The base state boundary conditions

The base state density, temperature, pressure and water vapor mixing ratio at
the lateral boundaries are initialized using the same method as the interior
points. Zero vertical gradients are assumed for  θ  and  qv , and the hydrostatic

relation is used to obtain p  and other thermodynamic variables at the top and
bottom boundaries.

6.6. Warm Rain Microphysics Parameterization  ________________

The Kessler warm rain microphysics parameterization considers three
categories of water; water vapor, cloud water and rain water. Each of the
liquid water forms is implicitly characterized by a droplet distribution. Small
cloud droplets are first formed when the air becomes saturated and
condensation occurs. If the cloud water mixing ratio exceeds a threshold
value, raindrops are formed by auto-conversion from the cloud droplets. The
raindrops then collect smaller cloud droplets by accretion as they fall at their
terminal speed. If cloud droplets enter unsaturated air they evaporate until
either the air is saturated or until the droplets are exhausted. Raindrops also
evaporate in a subsaturated environment at a rate depending on their
concentration and the saturation deficit. When the ice phase is included, many
more processes will be involved. These processes are discussed later in
Section 6.7.

This section describes the Kessler warm rain microphysics
parameterization scheme used in ARPS 4.0. It is based on the descriptions
given by Klemp and Wilhelmson (1978) and Soong and Ogura (1973).
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6.6.1. Autoconversion rate of cloud water to rain water

The rate of autoconversion  of cloud to rain water is approximated by
the simple relation

Ar = Car ( qc - qccrit) (6.6.1)

where Ar is the autoconversion rate of cloud water to rain water in kg kg-1s-1,
qc is the cloud water mixing ratio in kg kg-1, qc crit = 1 x 10-3 kg kg-1 is the
cloud water mixing ratio threshold, and C ar = 1 x 1 0 -3  s - 1  is the
autoconversion rate.

6.6.2. Accretion (collection)of cloud water by rainwater

The rate of accretion  of cloud water by rain water is approximated by:

Cr = Ccr qc qr0.875 (6.6.2)

where Cr is the accretion rate of cloud water by rain water in kg kg-1s-1, qr is
the rain water mixing ratio in kg kg-1, and Ccr = 2.2 s-1.

6.6.3. Terminal velocity of rainwater

The terminal fall velocity    for the averaged-sized raindrops is

Vtr = 36.34 (0.001 ρ
_

 qr)0.1364 ( ρo/ρ
_

 )0.5 (6.6.3)

where Vtr is the terminal velocity of air in m s-1, ρ
_

 is the base state density in

kg m-3, ρo = 1.225 kg m-3 is the reference density.

6.6.4. Rainwater evaporation rate

The evaporation rateof raindrops is defined as

   
Er =

1
ρ

C [ 1- qv / qvs] [ ρ qr ]0.525

2.030x104 + 9.584x106/ [ qvs p ]
(6.6.4)

where Er is the evaporation rate in kg kg-1s-1, qv is the water vapor mixing
ratio in kg kg-1, p is the pressure in Pa. Note that all over-barred variables are
functions of z only. The ventilation coefficient, C, is given by



Chapter 6: Theoretical Formulation

CAPS - ARPS Version 4.0 167

    
C = 1.6 + 30.3922 ( ρ qr)

0.2046 . (6.6.5)

The evaporation rate is used only when the air is unsaturated.

6.6.5. Saturation adjustment

The saturation adjustment scheme computes the amount of water vapor
converted to cloud water if super-saturation exists (qv>qvs), or the amount of
cloud water evaporated if sub-saturation exists (qv<qvs). Here qvs is saturation
mixing ratio calculated from Teten's formula (6.3.19). The amount of
adjustment to qv is given by

   
δqvs =

- [qv
*-qvs

* ]

1 +
aw(273.15-bw) qvs

* Lv/Cp

[T*-bw]2

(6.6.6)

with δqvs subjected to the following test,

δqvs = min [ δqvs, qc ]. (6.6.7)

Here the asterisked variables have been updated for advection, diffusion,
filtering, and other forcing processes, and δqvs is the amount of cloud mixing
ratio in kg kg- 1  created by condensation (if negative) or evaporation (if
positive).

The adjustment to the potential temperature corresponding to the
change in qv is

δθ' = -  Γ δqvs. (6.6.8)

where  Γ  is defined as

   Γ = Lv / (ΠCp) (6.6.9)

where Lv is the latent heat of evaporation defined by:
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Lv = 2,500,780.0 (273.15T -1)(0.167 + 3.67x10-4T) . (6.6.10)

The temperature has units of °K, and Lv has units of J kg-1.

 Π  is the Exner function (or the non-dimensional pressure) given by:

   
Π = (p / po)

Rd / Cp (6.6.11)

where Rd =286.04 J /(kg °K) is the gas constant for dry air, and Cp =1004. J /
(kg °K) is the specific heat for dry air. Po = 1000 mb is a constant reference
pressure.

6.6.6. Differencing the microphysics scheme

The adjusted values for θ', qv, qc, and qr are obtained from:

 θ'n+1 = θ'*n+1 -  Γ ( δqvs + 2 ∆t Er)

 qvn+1 = qv*n+1 + δqvs + 2 ∆t Er

 qcn+1 = qc*n+1 - δqvs - 2 ∆t (Ar + Cr)

q q t A C Er
n

r
n

r r r
+ += + + −1 1 2* [ ]∆ (6.6.12)

where ∆t is the integration time step. The last term on the right hand side of
the rain water equation is the fallout term.

6.6.7. Other adjustments

In ARPS, negative water quantities produced by advection and by the
vertical flux terms associated with rainwater fallout are not adjusted. Rather,
the negative values are set to zero and only the positive values are used in the
microphysical calculations. Since both positive and negative values are
involved in the advection and mixing processes, the total water content is
conserved apart from the rainwater fallout. In future versions of ARPS,
positive definite schemes will be used for scalar advection, so that negative
values will not be generated.



Chapter 6: Theoretical Formulation

CAPS - ARPS Version 4.0 169

6.7. Microphysics Rate Equations  ____________________________

In ARPS, the ice microphysics package is based on a code developed
by Tao and Simpson (1993). It includes the Kessler warm rain microphysics
and three-category ice-phase (cloud ice, snow and hail / graupel)
parameterization schemes (Lin et al., 1983). The particle size distribution
functions for rain (qr), snow (qs) and graupel / hail (qg), are assumed to be of
the form

N D N D( ) exp( )= −0 λ (6.7.1)

where D  is the drop diameter and N(D) the number of drops of diameter
between D and D + δ D in unit volume of space, N0, the intercept parameter,
is the value of N(D) for D = 0, and

λ  = 
   πρxN0
ρ qx

0.25

(6.7.2)

is the slope of the particle size distribution in which ρx  and qx  is density and
mixing ratio of the hydrometeors, respectively. The typical intercept
parameters used for rain, snow and graupel (hail) are 0.08 cm-4, 0.04 cm-4, and
0.04 cm-4 (0.0004 cm-4), respectively. The density for rain, snow and graupel
(hail) are 1 g cm-3, 0.1 g cm-3, and 0.4 g cm-3 (0.917 g cm-3), respectively. The
cloud ice has a single size (mono-disperse) where its diameter and density are
assumed to be 2 X 10-3 cm and 0.917 g cm-3, respectively.

The conservation equations for cloud water (qc), rain (qr), cloud ice
(qi), snow (qs) and graupel / hail (qg) have the form introduced in Eq.(6.2.27).
In the following equation, the terms describing the rate processes correspond
to Figure 6.3 and Table 6.1, in which the various processes are described.

   Sqc
= ρ c− ec − Tqc + Dqc  (6.7.3)

   Sqr
= ρ −er+ m − f − Tqr + Dqr (6.7.4)

   Sqc
= ρ di− si − Tqi+ Dqi (6.7.5)

   Sqs
= ρ ds− ss− ms+ fs − Tqs+ Dqs (6.7.6)

   Sqc
= ρ dg− sg− mg+ fg − Tqg+ Dqg (6.7.7)
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where m = ms + mg, and f = fs + fg (Lin et al., 1983).  The symbols c, e, f, m, d
and s stand for the rates of condensation, evaporation of droplets, freezing of
raindrops, melting of snow and graupel, deposition of ice particles, and
sublimation of ice particles, respectively.  The terms Dqc, Dqr, Dqi, Dqs, and
Dqg are subgrid-scale diffusion terms for qc, qr, qi and qg, respectively. The
terms Tqc, Tqr, Tqi, Tqs and Tqg are microphysical transfer rates between
hydrometeor species, and their sum is zero. They are defined as:

T P P P P D Q Q

P P P

qc sacw raut racw sfw gacw sacw gacw

i imlt idw

= − + + + + + +( )
− + −hom  (6.7.8)

T P P P P D W

P P P

qi saut saci raci sfi gaci gaci

i imlt idw

= − + + + + +( )
+ − +hom

 (6.7.9)

T Q P P Q

P D W P P

qr sacw raut racw gacw

iacr gacr gacr sacr gfr

= + + +

− + + + +( ) (6.7.10)

T P P P P P P P P

P D W P P

qs saut saci sacw sfw sfi raci iacr sacr

gacs gacs gacs gaut racs

= + + + + + + +

− + + + + −( )[ ]
δ δ δ

δ

3 3 2

21

(6.7.11)

T P D W D P

P D W P P D

W P P

qg raci gaci gaci gacw iacr

gacs gacs gacs gaut racs gacr

gacr sacr gfr

= −( ) + + + + −( )
+ + + + + −( ) +

+ + −( ) +

1 1

1

1

3 3

2

2

δ δ

δ

δ

(6.7.12)

where

W P D W Wgacr wet gacw gaci gacs= − − − .

For T > 273.16°K,

P P P P P P P

D W D D P

P P P P P

saut saci sacw raci iacr sfi sfw

gacs gacs gacw gacr gwet

racs sacr gfr gaut imlt

= = = = = =

= = = = =

= = = = = = 0
 (6.7.13)
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For T < 273.16°K,

Q Q P P Psacw gacw gacs idw i= = = = =hom 0.
(6.7.14)

In the preceeding equations, δ2  = 1 for a grid box in which qr and qs< 1 × 10-4

g g-1, and otherwise is defined as zero. δ3 = 1 for a grid box in which qr < 1 ×
10-4 g g-1, and otherwise is defined as zero (see Lin et al., 1983). Dgaci , Dgacr

and Dgacs  (Wgaci , Wgacr  and Wgacs) are production rates for dry (wet) growth of

hail. A schematic diagram of microphysical processes is shown in Figure 6.4.
The explicit formulation of these hydrometeor transformations can be found in
Lin et al. (1983).

A saturation adjustment scheme that calculates the amount of conden-
sation (and/or deposition) necessary to remove any supersaturated vapor, or
the amount of evaporation (and/or sublimation) necessary to remove any sub-
saturation in the presence of cloud water (cloud ice) is needed for a non-
hydrostatic cloud model. A relaxation technique (e.g., Newton-Raphson
method) is used to iteratively balance the heat exchange and change of phase
of water substance (Tao, et al., 1989). Initiation of cloud ice (Pint ) and depo-
sitional growth of cloud ice ( Pdepi) discussed in Rutledge and Hobbs (1984) is

used to initiate the cloud ice in a saturated environment. This procedure
weighs the saturation mixing ratio in favor of ice at levels above the freezing
level 0°C. This adjustment scheme will almost guarantee that the cloudy
region (defined as the area which contains cloud water and/or cloud ice) is
always saturated (100% relative humidity). This permits subsaturated down-
drafts with rain and hail/graupel particles but not cloud-sized particles.
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Figure 6.4. Cloud microphysical processes considered in the ice microphysics
parameterization scheme (after Lin et al., 1983).
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Table 6.1. Definition of symbols used in microphysics parameterization

Symbol Definition
____________________________________________________________

Pdepi Depositional growth of cloud ice.

Pint Initiation of cloud ice.
Pimlt Melting of cloud ice to cloud water.
Pidw Depositional growth of cloud ice at the expense of cloud water.

  Pi hom Homogeneous freezing of cloud water to cloud ice.

Piacr Accretion of rain by cloud ice; producing snow or graupel
depending on the amount of rain.

Praci Accretion of cloud ice by rain; producing snow or graupel
depending on the amount of rain.

Praut Autoconversion of cloud water to rain.
Pracw Accretion of cloud water by rain.
Prevp er( ) Evaporation of rain.

Pracs Accretion of snow by rain; producing graupel if rain or
snow exceeds threshold and T < 273.16 or rain if T >
273.16.

P Q sacw( ) Accretion of cloud water by snow; producing snow ( Psacw)
if T < 273.16 or rain (Qsacw ) if T > 273.16.

Psacr Accretion of rain by snow; producing graupel if rain or
snow exceeds threshold; if not, produces snow.

Psaci Accretion of cloud ice by snow.
Psaut Autoconversion (aggregation) of cloud ice to snow.
Psfw Bergeron process (deposition and riming) - transfer of

cloud water to snow.
Psfi Bergeron process embryos (cloud ice) used to calculate

transfer rate of cloud water to snow ( Psfw ).

Psdep ds( ) Deposition growth of snow.

Pssub Ss( ) Sublimation of snow.

Psmlt ms( ) Melting of snow to rain, T > 273.16.

Pwacs Accretion of snow by cloud water to form rain, T > 273.16.
Pgaut Autoconversion (aggregation) of snow to graupel.

Pgfr f g( ) Probabilistic freezing ( Bigg ) of rain to graupel.

D Q gacw( ) Accretion of cloud water by graupel.

D W gaci( ) Accretion of cloud ice by graupel.

D W gacr( ) Accretion of rain by graupel.
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Pgsub sg( ) Sublimation of graupel.

Pgmlt mg( ) Melting of graupel to form rain, T > 273.16. (In this regime,

Qgacw  is assumed to be shed as rain.)

Pgwet Wet growth of graupel; may involve Wgacs  and Wgaci  and

must include Dgacw  or Wgacr , or both. The amount of Wgacw

which is not able to freeze is shed to rain.

6.8. PBL Depth Calculation __________________________________

The planetary boundary layer (PBL) processes and the dispersion of
atmospheric pollutants are limited by the PBL depth. Therefore, the prediction
of the PBL depth is of great practical concern. In addition, the development of
certain convective systems(e.g., dryline-forced thunderstorms) is sensitive to
the PBL depth . ARPS predicts the time evolution of PBL depth in response to
the surface heat fluxes. ARPS will make use of the computed PBL depth to
model certain physical processes in future versions of ARPS.

ARPS employs a rate equation that describes the development of the
planetary boundary layer (PBL) depth as a function of time, for stable or
unstable conditions. There are 4 options for pblopt, a parameter in the input
file:

pblopt

h

h u f f

u

h

= =














0

1

2

3

0

0

0

,  

,   

,  /     

       

,      

*

*

do not compute PBL depth

user specified initial depth

in which is the Coriolis parameter,

and is the frictional velocity.

use sounding to estimateθ

Once the initial depth (ho) is given, the time-dependent PBL depth can
be calculated according to the bulk Richardson number (stability) at the top of
PBL:

Rib = g

θ0

(θh − θs )h

Uh
2

,

where Uh  andθh  represent the wind speed and potential temperature at the top
of the PBL, and θ0  and θs are the reference and the surface potential
temperatures.
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6.8.1. Stable boundary layer

For Rib > 0, the rate equation similar to that discussed in Nieuwstadt
and Tennekes (1981) is used to predict the PBL depth. That is,

dh

dt
= T −1 (he − h),

where

the time scale T = − 3

4

(θh −θs )

∂θs ∂t
,

the equilibrium height h
fU

g te
h

s

= 0 15 0

2

.  
sin cosθ α α
∂ θ ∂

,

the angle between the wind at the PBL top and the surface wind 
α = −− −tan ( ) tan ( )1 1u v u vh h s s .

Note that when the absolute value of ∂θs ∂t  is too small, the PBL depth will
be approximated by

h = u*
2 ( fGsinα ).

6.8.2. Unstable boundary layer

For Rib < 0, the rate equation from Gryning and Batchvarova (1990) is
used to predict the development of the PBL depth. Let the vertical heat flux at

the surface be denoted by ( ′w ′θ )s , and the Obukhov length by

L = − u*
3θ

κg( ′w ′θ )s

,

then the PBL depth can be predicted according to

h2

(1+2A)h − 2BκL







dh

dt
= ( ′w ′θ )s

(∂θ ∂z)h

,

where A  = 0.2, B  = 2.5, and κ  is the von Karman constant. Following

Tennekes (1973), dh/dz is limited to 0.2[0.2gh( )′ ′w sθ /θ]1/3.
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6.9. Parameterization of the Surface Fluxes  ___________________

6.9.1. Surface flux calculations

Numerical weather prediction is often sensitive to surface fluxes of
heat, momentum, and moisture. A stability and roughness-length dependent
surface flux model is available in ARPS using a modified Businger
formulation (Businger, et. al., 1971). An analytical procedure, instead of the
commonly used iteration method, is used in the flux calculations for a much
improved efficiency (Byun, 1990). Businger’s formulation was further
modified so that the results are more realistic for highly stable or highly
unstable environments (Deardorff, 1972b). Options for (constant) drag
coefficients are also available (options sfcphy = 1 and 3).

The surface fluxes enter the model as the lower boundary conditions
for the momentum stresses [τ13 and τ23 in (Eq. 6.3.1)], turbulent heat flux [H3

in Eq. (6.3.5) for θ'] and turbulent moisture flux [H3 in Eq. (6.3.5) for qv] at
the ground surface.

The surface momentum fluxes are defined as

   – τ13 surface
= – ρ u'w'

surface
= ρ Cdm max(V,Vmin) u (6.9.1)

   – τ23 surface
= – ρ v'w'

surface
= ρ Cdm max(V,Vmin) v (6.9.2)

where u and v are the horizontal velocity components evaluated at the lowest

grid level above the earth's surface and V ≡   u2 + v2  is the wind speed at the
same level. Vmin is the lower limit of V, and is included to avoid zero fluxes at
calm wind condition. Vmin is specified by the user in the input file.

The surface sensible heat flux is defined as

   – H3 surface
= – ρ w'θ'

surface
= ρ Cdh max(V,Vmin) θ - θs  (6.9.3)

where θ is the potential temperature at the first grid level above the earth’s

surface and θs is the ground temperature that is either user-specified or
predicted by the surface energy budget equations. The drag and exchange
coefficients Cdm a n d  Cdh can be either user-specified or computed
diagnostically as described below.



Chapter 6: Theoretical Formulation

CAPS - ARPS Version 4.0 177

When vegetation is not considered, the moisture flux at the surface is:

   – H3 surface
= – ρ w'q'v surface

= ρ Cdq max(V,Vmin) qv - qvs (6.9.4)

where qv is the water vapor mixing ratio at the first grid level above the
ground and qvs is the ground level water vapor mixing ratio, which can be
user-specified or predicted by the surface energy budget equations. Cdq is the
bulk aerodynamic coefficient for the moisture flux and is often equal to Cdh.
When vegetation is considered, the surface moisture flux is given by Eqs.
(6.10.21)-(6.10.32).

6.9.2.  Surface fluxes over land

The surface roughness over the ocean is a function of surface
conditions, while surface roughness over land is independent of the surface
wind.

One of the practical stability parameters is the bulk Richardson
number:

Rib = g

θ0

∆θ z − z0( )
U2 , (6.9.5)

where z  is the height of the surface layer, z0 is the surface roughness length,
∆θ = θ1 −θs, and θ0 ,θs  and θ1 are the base-state, surface and first model
level potential temperatures, respectively. The environment is unstable,
neutral or stable if Rib < 0 , Rib = 0  or Rib > 0 , respectively.

Let θ* be the temperature scale representing the surface heat flux w'θs'

divided by the frictional velocity u*. According to the Monin-Obukhov (1954)
similarity theory,

u*  = Cu U , withC
k

u z
z m

z
L

z
L

= ( ) − ( )ln
0

0ψ ,
(6.9.6)

θ* = Cθ θ∆ , with C
k

Pr0
z

z h
z
L

z
L

θ ψ
= ( ) − ( )( )ln

0

0,
(6.9.7)

where k is the von Karman constant, and Pr0 is the Prandtl number.
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We note the following relationships for the drag and exchange
coefficients:

Cdm = Cu
2 = u*

2

U2 , (6.9.8)

and

Cdh = Cθ Cu = u*θ*

U∆θ
. (6.9.9)

To obtain Cdm  andCdh , our next task is to compute Cu and Cθ . We
define the functional form of ψ m  and ψ h  that depends on the stability as
follows.

a) Unstable condition

For unstable conditions, we have (Byun, 1990)

ψ χ
χ

χ
χ

χ χm =






+
+







− +2
1
1

1
1

2 2
2

0
2

1 1
0ln

+
+

ln
+

tan tan
0

- - (6.9.10)

and

ψ η
ηh = +

+






2
1
1 0

ln , (6.9.11)

where
χ0 = 1 − γ mζ0( )

1 4 , (6.9.12)

χ γ ζ= −( )1
1 4

m , (6.9.13)

η γ ζ0 0

1 2
1= −( )h , (6.9.14)

η γ ζ= −( )1
1 2

h (6.9.15)

with ζ0 = z0 L , ζ = z L , z0 is the roughness length, and γ γm h= =15 9and

are specified constants. The length scale ζ  (and ζ0 = z0 z( )ζ ) is computed by
the following formulation that is similar to one used in Byun (1990). When

Qb
3 − Pb

2 ≥ 0,

ζ θ
γ

=
−( ) ( )[ ]
−( ) ( )

− ( ) +










z z z z z

z z z z
QT

T

b b
m

ln

ln
cos0

2

0

2 2 3
1

3 ,
(6.9.16)
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and when Qb
3 − Pb

2 < 0,

ζ =
z z − zT( ) ln z z0( )[ ]2

z − z0( )2
ln z zT( )

− Tb + Qb

Tb







+ 1
3γ m









, (6.9.17)

where

Qb  = (
1

 γ m
2
 + 3 sb

2 γ
γ

h

m

)/9 (6.9.18)

θb = cos-1[Pb/√Qb
3  ] (6.9.19)

sb = 
Rib
Pr0

      (6.9.20)

Tb  = (√P Qb b
2 3  −  + Pb  )1/3 (6.9.21)

Pb = [ -2

 γ m
3

 + 
9

 γ m

 ( - γ
γ

h

m

+ 3)sb
2] /54. (6.9.22)

For a given Rib, ζ , ψ m , ψ h , Cu  and Cθ  can be computed by the above
formulations.

b) Neutral condition

For the case of neutral stability, Cu( )neu
 and Cθ( )neu

 are calculated

with an extremely small negative Rib , and these require the use of the above
equations for the unstable case.

c) Free convection condition

According to Deardorff (1972b), for free convection (highly unstable
case),

Cu = min Cu,2 Cu( )neu( ), (6.9.23)

Cθ = min Cθ ,3.333 Cθ( )neu( ) (6.9.24)



Chapter 6: Theoretical Formulation

CAPS - ARPS Version 4.0 180

and the exchange coefficient Cdh  is limited by

C C C
Udh u

s=
−( )











min θ
θ θ

,
.0 0019 1

1

3

. (6.9.25)

d) Stable condition

Similar to Deardorff (1972b), for the stable case,

C C
Ri

Riu u
b

c

= ( ) −




neu

1 , (6.9.26)

C C
Ri

Ri
b

c
θ θ= ( ) −





neu

1  , (6.9.27)

where Ric  is a critical bulk Richardson number, and set to 3.05. For practical
reasons, Rib in the foregoing equations is limited by

Ri Ri Rib b c= ( )min , .0 25 . (6.9.28)

6.9.3.  Surface fluxes over ocean

Over the ocean (sea) surface, the surface roughness lengths are related
to the surface wind speed. The momentum and thermal roughness lengths are
computed by

z0 = z exp -
k

c1







, (6.9.29)

zT = z exp −
k c1

Pr0 c2







, (6.9.30)

with c1 = 0.4 + 0.079U( ) × 10−3 and c2 = 1.1 × 10−3 (Anderson, 1993).

The bulk Richardson number for this case is given by
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Rib = g

θ0

∆θ z − z0( )2

U2 z − zT( ) . (6.9.31)

The same procedure as in Section 6.9.2a is used to compute surface
momentum and heat fluxes over sea.

6.9.4.  Linear distribution of surface fluxes in mixing layer

It is found often that  subgrid scale turbulent mixing and resolved scale
eddies are not effective in transporting surface momentum, heat and moisture
fluxes upwards so as to develop a well-mixed boundary layer. ARPS provides
an option to linearly distribute the surface fluxes calculated according to
Eqs.(6.9.1)-(6.9.4) in a specified or predicted mixing layer (PBL) depth. The
linearly distribution occurs when the PBL is convectively unstable.

With the linear distribution option, the vertical turbulent momentum
fluxes (stresses) τ13 and τ23, and the vertical turbulent heat and moisture
fluxes H3 in the unstable boundary layer are replaced by a function that
decreases linearly from their respective surface values calculated according to
Eqs.(6.9.1)-(6.9.4)  to zero at the top of the boundary layer. This distribution is
neccessary for applications such as land-sea breeze simulations and is similar
to the treatment in Blackadar PBL parameterization scheme (Zhang and
Anthes, 1982).  A more accurate treatment is been investigated.

6.10. Land-Surface Energy Budget and Soil-Vegetation Model _____

6.10.1. Land-Surface Energy and Moisture Budgets

This model is based on the soil-vegetation model developed by
Noilhan and Planton (1989) and Pleim and Xiu (1995). It is designed to
simulate the essential processes involved in surface-atmosphere interactions
with the minimal amount of computation time and the fewest parameters and
complexities (Wong et al., 1994). At present, only snow-free and non-frozen
soils are considered. It requires the horizontal distribution of soil texture at the
land-surface. Data of surface characteristics are discussed in Section 8.3.

The model is based on five prognostic equations:

   ∂Ts

∂t = CT Rn – H – LE – 2π
τ Ts – T2 (6.10.1)
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   ∂T2

∂t = 1
τ Ts – T2 (6.10.2)

   ∂Wg

∂t =
C1

ρwd1
Pg – Eg –

C2
τ Wg – Wgeq (6.10.3)

   ∂W2

∂t = 1
ρwd2

Pg – Eg – Etr (6.10.4)

   ∂Wr

∂t = veg P – Er (6.10.5)

The meaning of each of the symbols used in this section are given in
Table 6.2. Eq. (6.10.1) shows that the time rate of change in soil surface
temperature is the residual of the surface energy balance between net radiation
Rn, surface sensible heat flux H, latent heat flux LE and Ts - T2. The soil heat
transfer. Eq. (6.10.3) shows that the time rate of change in volumetric soil
moisture near the soil surface results from the residual of the precipitation rate
at the ground, and the evaporation rate from the ground, and the transfer of
surface soil moisture with deep soil layer moisture. Eqs. (6.10.2) and (6.10.4)
describe the heat and moisture budget in deep soil. Eq. (6.10.5) predicts the
time rate of change of water Wr in the canopy. The functional forms of various
terms in the above set of equations are discussed as follows.

6.10.2. Radiation-soil-vegetation model

a) Thermal coefficients

The thermal coefficient CT in (6.10.1) can be written as

  CT = 1
1 – veg

CG
+

veg
CV

(6.10.6)

in which veg is the fractional coverage of vegetation, and the thermal
coefficient of vegetation is

  CV = 10–3 Km2J–1 (6.10.7)

and the thermal coefficient of bare soil is 
  

CG = CGsat

Wsat

W2

b/ 2ln 10

. (6.10.8)

b) Radiation flux
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For surface heat balance, net radiative flux in (6.10.1) is given by
(Wong et al., 1983)

  Rn = Rsw 1 – α – εgσTs
4 + εaσTa

4  (6.10.9)

in which   εg is the emissivity of the earth's surface,    εa = 0.725  is the

emissivity of the air,   σ = 5.67×10–8 Wm–2 K–4  is the Stefan-Boltzman
constant, and Ta is the air temperature at an atmospheric level. The total
albedo is    α = αs + αz ,  where   αs  is the albedo at polar zenith and   αz  the

zenith angle adjustment to α. The zenith angle adjustment is given by

  αz = 0.01 exp 0.003286Z
1.5

– 1

where Z is the solar zenith angle in radians and the minimum albedo with Z =
0 is

   
αs =

0.31 – 0.34 Wg / Wsat, Wg / Wsat ≤ 0.5
0.14 Wg / Wsat > 0.5

.

The short-wave radiation is determined from

   
Rsw = τrg τwv S0

a2

r2 cos Z (6.10.10)

in which the solar constant is   S0 = 1353.0 Wm–2 , and Earth-Sun distance

factor is from

  a2

r2 = 1.000110 + 0.034221 cos d0 + 0.001280 sind0 +

+ 0.000719 cos 2d0 + 0.000077 sin2d0

(6.10.11)

where   d0  = 2πm/365 and m is the day number starting with 0 on Jan. 1 and
ending 364 on Dec. 31. The solar zenith angle Z is defined by

   cos Z = sin φ sin δ + cos φ cos δ cos hr (6.10.12)

where φ is the latitude, δ is the solar declination:
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   δ = 23.5π
180 cos 2π Jd – 173 /365 (6.10.13)

where  Jd  (= m + 1) is Julian day.

The solar hour angle is defined by:

   
hr =

15π
180

tGMT – λ / 15° + Eτ – 12 (6.10.14)

where    Eτ = 0.158 sin π Jd + 10 /91.25 + 0.125 sin πJd/182.5 , (6.10.15)

 tGMT  is Greenwich Meridian Time, and  λ  is west longitude (in degrees).

To account for the attenuation by Rayleigh scattering and absorption
by permanent gases for solar radiation, the transmission function in (6.10.10)
has the form (Atwater and Ball, 1981)

   
τrg = 1.021 – 0.084 mdirf 949×10–8 p + 0.051

1/2

(6.10.16)

where p is the surface pressure (kPa)  mdirf  is a directional factor that is
equivalent to air mass at pressure of 101.3 kPa and follows a formulation
given by:

  mdirf = 35

1224 cos2Z + 1
1/2

(6.10.17)

The water vapor transmittance in (6.10.10) can be written as

   τwv = 1 –
2.9µMdirfc

1 + 141.5µMdirfc

0.635
+ 5.925µMdirfc

(6.10.18)

where  Mdirfc  =  mdirf  above any clouds and  Mdirfc  = 5/3 below and within cloud
layers. The path length µ at level p is computed from

   
µ =

1
g

qv
0

p p
101300

273.16
T

1/2

dp (6.10.19)
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c) Sensible heat flux

The sensible heat flux

   H = ρa cp Cdh Va Ts – Ta (6.10.20)

where cp is the specific heat at constant pressure;   ρa and  Va  are, respectively,

the air density and wind speed at an atmospheric level;  Cdh  is the exchange
coefficient depending upon the thermal stability and roughness.

d) Latent heat flux

The latent heat flux is the sum of the evaporation from the soil surface

 Eg , transpiration  Etr , and evaporation from wet parts of the canopy  Er :

  LE = L Eg + Etr + Er . (6.10.21)

in which L is the latent heat of vaporization and

   Eg = 1– veg ρaCdq Va hu qvsat Ts – qva (6.10.22)

where the relative humidity at the ground surface is

   

hu =

0.5 1 – cos πWg/Wfl , Wg<Wfl

1, Wg≥Wfl

(6.10.23)

with field capacity   Wfl = 0.75Wsat .  The saturation mixing ratio qvsat is
calculated using Teten’s formula given in Eq. (6.3.19).

In (6.10.21) - (6.10.23),

   
Etr = veg ρa

1 – Fw

Ra + Rs

qvsat Ts – qva (6.10.24)

and 
   

Er = veg ρa

Fw

Ra

qvsat Ts – qva (6.10.25)
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in which the wet fraction of the canopy,  Fw , is defined as

  
Fw =

Wr

Wrmax

2/3

(6.10.26)

and   Wr max = 0.2 veg LAI (mm) . (6.10.27)

Here LAI is the leaf area index of vegetation and it depends on the vegetation
type. The aerodynamic resistance is parameterized by

  Ra = 1
Cdq Va

. (6.10.28)

The surface resistance for evapotranspiration is computed as

  
Rs =

Rsmin

LAI F1 F2 F3 F4

(6.10.29)

in which

 
  

F1 =
f + Rsmin/Rsmax

1 + f
(6.10.30)

with 
  

f = 0.55
RG

RGL

2
LAI

(6.10.31)

where  Rsmax  = 5,000 s/m,  RG  =  Rsw , and  RGL  depends on the vegetation type.

   

F2 =
1, W2 > Wfl

(W2 – Wwilt)/(Wfl – Wwilt), Wwilt ≤ W2 ≤ Wfl

0, W2 < Wwilt

(6.10.32)

   

F3 =
1 – 0.06 qvsat Ta – qva , qvsat Ta – qva ≤ 12.5 g/kg

0.25, otherwise
(6.10.32)

  F4 = 1 – 0.0016 298.0 – Ta

2
(6.10.34)
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e) Soil surface moisture

In (6.10.3), the surface volumetric moisture  Wgeq  when gravity
balances the capillary force is computed according to

   Wgeq

Wsat
= x – a xp 1 – x8p (6.10.35)

in which
  x =

W2

Wsat
. (6.10.36)

In (6.10.3), the coefficients are given by

   
C1 = C1sat

Wsat

Wg

b
2

+ 1

(6.10.37)

  
C2 = C2ref

W2

Wsat – W2 + Wl
(6.10.38)

where  Wl  is a small numerical value that limits   C2  at saturation. The

parameters   C1sat ,   C2ref , b , and p  are soil-texture dependent.
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Table. 6.2. List of variables used in the soil model.

Name Description Coding Name Where Defined
______________________________________________________________________________________

Ts Ground surface temperature tsfc(nx,ny) ARPS40
T2 Deep ground temperature tsoil(nx,ny) ARPS40
Wg Soil surface moisture wetsfc(nx,ny) ARPS40
W2 Deep soil moisture wetdp(nx,ny) ARPS40
Wr Canopy moisture wetcanp(nx,ny) ARPS40
CT Land surface heat capacity ct SOILEBM
CG Thermal coefficient for bare ground cg SOILEBM
CV Thermal coefficient for vegetation cgv SOILPARAM
b Slope of the retention curve bslope(13) SOILPARAM
CGsat Thermal coefficient for bare ground at saturation cgsat SOILPARAM
veg Vegetation Fraction veg14 SOILPARAM
Rn Net radiation heat flux rnflx(nx,ny) SOILEBM
Rsw Downward short wave flux rsw RADNET
α Surface albedo alf RADNET
αs Soil moisture adjustment of albedo alfs RADNET
αz Solar zenith angle adjustment of albedo alfz RADNET
So Solar constant solarc phycst.inc
(a/r)2 Squared ratio of average distance of the earth from a2dr2 SOLRAD

the sun to its actual distance at any time of the year
Z Solar zenith angle zenith (nx,ny) SOLRAD
φ Latitude at scalar points latscl(nx,ny) SOILEBM
δ Solar declination sdeclin SOLRAD
Jd Julian day jday INITPARA
hr Solar hour angle shrangl SOLRAD
eτ Equation of time etau SOLRAD
τ Length of the day tau SOILEBM
τrg Transmittance after Rayleigh scattering and trrg RADNET

absorption by gases
τwv Water vapor transmittance trwv RADNET
mdirf Directional factor of Rayleigh scattering and absorption dirf SOILEBM
Mdirfc Directional factor of Rayleigh scattering and absorption dirfc SOILPARAM

by cloud
µ Precipitation path length prcpln(nx,ny) SOILEBM
εg Emissivity of the ground emissa phycst.inc
εa Emissivity of the atmosphere emissg phycst.inc
σ Stefen-Boltzmann constant sbcst phycst.inc
H Sensible heat flux shflx(nx,ny) SOILEBM
ρa Air density at anemometer level rhoa(nx,ny) SOILEBM
Va Wind speed at anemometer level windsp(nx,ny) SOILEBM
Ta Air temperature at anemometer level tair(nx,ny) SOILEBM
qva Mixing ratio at anemometer level qvair(nx,ny) SOILEBM
qvsat (Ts) Surface saturated mixing ratio qvsatts EVAPFLX
qvsat (Ta) Saturated mixing ratio at anemometer level qvsata EVAPFLX
C1 Coefficient of the net precipitation c1wg SOILEBM
__________________________________________________________________________________
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Table. 6.2. Continued ...

Name Description Coding Name Where Defined
__________________________________________________________________________________

C2 Coefficient of the perturbated near surface moisture c2wg SOILEBM
content

C1sat Value of C1 at saturation c1sat SOILEBM
C2ref Value of C2 at W2 = 0.5 Wsat c2ref SOILEBM
Wgeq Surface moisture when gravity and the capillary wgeq SOILEBM

forces are balanced
a Coefficient in Wgeq formula awgeq(13) SOILPARAM
p Exponent in Wgeq formula pwgeq(13) SOILPARAM
hu Relative humidity at ground surface rhgs SOILEBM
Wfl Field capacity of soil moisture wfc(13) SOILPARAM
hv Halstead coefficient hv SOILEBM
δ Fraction of foliage covered by intercepted water delta EVAPFLX
Er Direct evaporation from the fraction δ of foliage evaprr(nx,ny) EVAPFLX
Etr Transpiration of the dry portion (1-δ) of leaves evaprtr(nx,ny) EVAPFLX
Ev Evapotranspiration from vegetation evaprv(nx,ny) EVAPFLX
Eg Evaporation from ground evaprg(nx,ny) EVAPFLX
P Precipitation rate precip(nx,ny) SOILEBM
Ra Aerodynamic resistance (see rstcoef) EVAPFLX
Rs Surface resistance (see rstcoef) EVAPFLX
Wmax Maximum value of vegetation moisture Wr wrmax SOILEBM
F1 Fractional conductance of photosynthetically (see rstcoef) EVAPFLX

active radiation
F2 Fractional conductance of water stress (see rstcoef) EVAPFLX
F3 Fractional conductance of atmospheric vapor pressure f34(nx,ny) SOILEBM
F4 Fractional conductance of air temperature f34(nx,ny) SOILEBM
LAI Leaf Area Index lai(nx,ny) SOILEBM
Rsmin Minimum of surface resistance rsmin(14) SOILEBM
Rsmax Maximum of surface resistance rsmax SOILEBM
Rgl Species-dependent threshold value of incoming radiation rgl(14) SOILPARAM
Wwilt Wilting point of soil moisture wwlt(13) SOILPARAM
__________________________________________________________________________________
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6.11. Cumulus Parameterization Schemes _____________________

A modified Kuo scheme has been implemented in ARPS 4.0.  We plan
to add an option of another cumulus scheme (e.g., Kain and Fritsch, 1993) in
the near future.

6.11.1. Modified Kuo scheme

The Kuo scheme (Kuo, 1965, 1974) is one of the earliest and most
enduringly popular schemes for cumulus parameterization.  A critique of this
scheme can be found in Raymond and Emanuel (1993).  In this scheme, the
amount of convection is determined by the vertically integrated moisture
convergence.  The feedback to the large scale (the vertical distribution of
heating and moistening) is represented by the terms   Sθ  (neglecting the

radiative heating) and  Sqv
 in (6.2.25) and (6.2.27), respectively. The user is

required to specify: (i) confrq, a frequency of the computing cumulus scheme;
and (ii) wcldbs, a critical threshold value of the vertical velocity at cloud base.

In the Kuo scheme, the vertical structure of cumulus heating is
assumed to be in the form of a relaxation toward a moist adiabat θa, i.e.,

  Sθ  ≡ 
ρ θ θ

τ
* ( )a −

        (6.11.1)

where τ  is a relaxation time, and it can be related to the fraction of the
available moisture supply (1-b)Mt that participates in the heating of an
atmospheric column:

τ = 1
1 0L b M

dz
t

a

Zt

( )
*  ( )

−
−∫ ρ π θ θ   (6.11.2)

in which π θ ( / )≡ c Tp  is the Exner function,  L is the latent heat of
evaporation, (1-b) is the precipitation efficiency that is inversely proportional
to wind shear (Fritsch and Chappell, 1980), and Mt, the available moisture
supply, is given by

Mt = − ∂
∂∫ Wc
q

z
dz

Zt

*
0

+ E   (6.11.3)

where E is the surface moisture flux as defined in Eq. (6.10.21).

The rate of precipitation (per unit area) due to cumulus convection is
given by

Pcum = ( )1 − b Mt                                                                          (6.11.4)
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In ARPS code, the procedure of computing   Sθ  at each grid point can
be summarized as follows:

1. Compute Mt according to Eq. (6.11.3), and check whether Mt is greater than
a critical threshold value.

2. Compute moist adiabat θa based on model sounding.
3. Determine cloud top and cloud base from model sounding, and check

whether cloud depth is deep enough and cloud top is higher than 500mb
level.

4. Check whether the vertical velocity at cloud base is greater than wcldbs, a
critical threshold value specified by the user.

5. Check the model sounding for convective instability to see if convection is
allowed.

6. If conditions in steps 3 to 5 are all met, then compute   Sθ  according to Eqs.
(6.11.1) and (6.11.2).


