! !################################################################## !################################################################## !###### ###### !###### SUBROUTINE KFPARA ###### !###### ###### !###### Adapted by ###### !###### Coastal Meteorology Research Program ###### !###### University of Oklahoma ###### !###### ###### !################################################################## !################################################################## ! SUBROUTINE kfpara (nx,ny,nz,j,dt,dx,mphyopt,kffbfct, & 1,10 kfsubsattrig, & ptop,psb,sigma,a,ub,vb,w0avg,tb,qvb, & dtdt,dqdt,dqldt,dqrdt,dqidt,dqsdt, & nca,raincv,ncuyes,icuyes,lsb) ! !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ! C ! THIS SUBROUTINE COMPUTES THE EFFECTS OF DEEP CONVECTION USING C ! THE KAIN-FRITSCH CONVECTIVE PARAMETERIZATION SCHEME. C ! MKS UNITS. C ! C ! INPUT: TEMPERTURE (T0, K) ; SPECIFIC HUMIDITY (Q0, KG/KG) ; C ! HORIZONTAL WIND SPEED (U0 AND V0, M/S) ; C ! PRESSURE (P0, PASCAL) ; VERTICAL MOTION (W0AVG, M/S). C ! OUTPUT: CONVECTIVE TEMPERATURE (DTDT), WATER VAPOR (DQDT), C ! CLOUD WATER (DQLDT), CLOUD ICE (DQIDT), C ! RAIN WATER (DQRDT), SNOW (DQSDT), AND C ! RAINFALL (RAINCV) TENDENCIES. C ! C ! DOCUMENTED BY JACK KAIN C ! JANUARY 1995 C ! UPDATED SEPTEMBER 1995 C ! NOVEMBER 1996 C ! C ! REFERENCES: C ! C ! KAIN AND FRITSCH (1993): "CONVECTIVE PARAMETERIZATION IN C ! MESOSCALE MODELS: THE KAIN-FRITSCH SCHEME" IN THE REPRESEN- C ! TATION OF CUMULUS CONVECTION IN NUMERICAL MODELS, A.M.S. C ! MONOGRAPH, K.A. EMANUEL AND D.J. RAYMOND, EDS., 165-170. C ! C ! FRITSCH AND KAIN (1993): "CONVECTIVE PARAMETERIZATION IN C ! MESOSCALE MODELS: THE FRITSCH-CHAPPELL SCHEME" IN THE REP- C ! RESENTATION OF CUMULUS CONVECTION IN NUMERICAL MODELS, A.M.S.C ! MONOGRAPH, K.A. EMANUEL AND D.J. RAYMOND, EDS., 165-170. C ! C ! FRITSCH AND CHAPPELL (1980), J. ATMOS. SCI., 1722-1733. C ! C ! NOTE: THE KAIN-FRITSCH SCHEME IS UNDER CONTINUED DEVELOPMENT. IF C ! YOU WOULD LIKE TO BE NOTIFIED WHEN THERE ARE UPDATES OR C ! CHANGES TO THE SCHEME, OR IF YOU HAVE PROBLEMS, QUESTIONS, OR C ! SUGGESTIONS PLEASE NOTIFY ME AT C ! C ! KAIN@ESSC.PSU.EDU C ! C ! JACK KAIN C ! JANUARY 1995 C ! November 1996 C !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ! ! This subrooutine is implemented in the ARPS by Zonghui Huo, ! 08/01/97 ! ! 11/21/2001 (Yunheng Wang) ! Corrected error u0(k) v0(k) should be column value and no average ! needed again in this subroutine. ! ! 04/18/2002 (Zuwen He) ! ! Allow sub-saturation in KF cumulus parameterization, see below ! for detail. Add a pass-in argument, kfsubsattrig, ! from the arps.input. If kfsubsattrig=1, the trigger is on. ! !----------------------------------------------------------------------- ! ! Variable Declarations: ! !----------------------------------------------------------------------- ! PARAMETER (kmx=100) ! increase if vertical levels >100 DIMENSION ptop(nx,ny) DIMENSION sigma(nx,ny,nz), a(nx,ny,nz) DIMENSION ub(nx,ny,nz),vb(nx,ny,nz),w0avg(nx,ny,nz) DIMENSION tb(nx,ny,nz),qvb(nx,ny,nz) DIMENSION psb(nx,ny) DIMENSION dtdt(nx,ny,nz), dqdt(nx,ny,nz) ! DIMENSION DUDT(NX,NY,NZ), DVDT(NX,NY,NZ) DIMENSION dqldt(nx,ny,nz), dqrdt(nx,ny,nz) DIMENSION dqidt(nx,ny,nz), dqsdt(nx,ny,nz) DIMENSION raincv(nx,ny) DIMENSION nca(nx,ny) DIMENSION icuyes(nx),lsb(nx) REAL :: kffbfct, dt INTEGER :: mphyopt ! ! To allow sub-saturation ! INTEGER :: kfsubsattrig REAL :: rhlcl REAL :: dqsdt_rh REAL :: dtrh ! !...DEFINE LOCAL VARIABLES... ! DIMENSION p0(kmx),z0(kmx),t0(kmx),tv0(kmx),q0(kmx), & u0(kmx),v0(kmx),tu(kmx),tvu(kmx),qu(kmx),tz(kmx), & tvd(kmx),qd(kmx),qes(kmx),thtes(kmx),tg(kmx),tvg(kmx), & qg(kmx),wu(kmx),wd(kmx),w0(kmx),ems(kmx),emsd(kmx), & umf(kmx),uer(kmx),udr(kmx),dmf(kmx),der(kmx),ddr(kmx), & dzq(kmx),umf2(kmx),uer2(kmx),udr2(kmx),dmf2(kmx),der2(kmx), & ddr2(kmx),dza(kmx),thta0(kmx),thetee(kmx),thtau(kmx), & theteu(kmx),thtad(kmx),theted(kmx),qliq(kmx),qice(kmx), & qlqout(kmx),qicout(kmx),pptliq(kmx),pptice(kmx),detlq(kmx), & detic(kmx),detlq2(kmx),detic2(kmx),ratio(kmx),ratio2(kmx) DIMENSION domgdp(kmx),exn(kmx),rhoe(kmx),tvqu(kmx),dp(kmx), & rh(kmx),eqfrc(kmx),wspd(kmx),qdt(kmx),fxm(kmx),thtag(kmx), & thtesg(kmx),thpa(kmx),thfxin(kmx),thfxout(kmx),qpa(kmx), & qfxin(kmx),qfxout(kmx),qlpa(kmx),qlfxin(kmx),qlfxout(kmx), & qipa(kmx),qifxin(kmx),qifxout(kmx),qrpa(kmx),qrfxin(kmx), & qrfxout(kmx),qspa(kmx),qsfxin(kmx),qsfxout(kmx),ql0(kmx), & qlg(kmx),qi0(kmx),qig(kmx),qr0(kmx),qrg(kmx),qs0(kmx),qsg(kmx) DIMENSION omg(kmx+1) DIMENSION rainfb(kmx),snowfb(kmx) ! DATA p00,t00/1.e5,273.16/ DATA cv,b61,rlf/717.,0.608,3.339E5/ DATA rhic,rhbc/1.,0.90/ DATA pie,ttfrz,tbfrz,c5/3.141592654,268.16,248.16,1.0723E-3/ DATA rate,rad/0.01,1500./ DATA r,g,cp/287.04,9.81,1005.7/ DATA xlv0,xlv1,xls0,xls1/3.147E6,2369.0,2.905E6,259.532/ DATA aliq,bliq,cliq,dliq/613.3,17.502,4780.8,32.19/ DATA aice,bice,cice,dice/613.2,22.452,6133.0,0.61/ ix=nx-1 kx=nz-3 kxp1=kx+1 kl=kx klm=kx-1 gdry = -g/cp rovg = r/g dxsq = dx*dx dt2 = 2*dt xtime = 10.0 ! !***************************************************************************** !...ADDITIONAL PARAMETERS THAT WILL NEED TO BE DEFINED SOMEWHERE... !...IN MM4, THEY ARE DEFINED IN subroutine param AND STORED IN !...VARIOUS COMMON BLOCKS ! ! DX=25000. ! HORIZONTAL GRID LENGTH (m) ! DXSQ=DX*DX ! GRID AREA (M**2) ! DT2=80. ! 2*DT (s) ! !...DEFINE CONSTANTS FOR CALCULATION OF LATENT HEATING... ! ! XLV0=3.147E6 ! LV = XLV0 + TMP*XLV1 ! XLV1=2369. ! XLS0=2.905E6 ! LS = XLS0 + TMP*XLS1 ! XLS1=259.532 ! !...DEFINE CONSTANTS FOR CALCULATION OF SATURATION VAPOR PRESSURE !...ACCORDING TO BUCK (J. APPL. METEO., DECEMBER, 1981)... ! ! ALIQ = 613.3 !ES(LIQ)=ALIQ*EXP((BLIQ*TMP-CLIQ)/(TMP-DLIQ)) ! BLIQ = 17.502 ! CLIQ = 4780.8 ! DLIQ = 32.19 ! AICE = 613.2 !ES(ICE)=AICE*EXP((BICE*TMP-CICE)/(TMP-DICE)) ! BICE = 22.452 ! CICE = 6133.0 ! DICE = 0.61 ! !**************************************************************************** ! PPT FB MODS !...OPTION TO FEED CONVECTIVELY GENERATED RAINWATER ! PPT FB MODS !...INTO GRID-RESOLVED RAINWATER (OR SNOW/GRAUPEL) ! PPT FB MODS !...FIELD. 'FBFRC' IS THE FRACTION OF AVAILABLE ! PPT FB MODS !...PRECIPITATION TO BE FED BACK (0.0 - 1.0)... ! PPT FB MODS fbfrc=kffbfct !from ARPS input file arps.input ! !...SCHEME IS CALLED ONCE ON EACH NORTH-SOUTH SLICE, THE LOOP BELOW !...CHECKS FOR THE POSSIBILITY OF INITIATING PARAMETERIZED !...CONVECTION AT EACH POINT WITHIN THE SLICE ! ! DO 325 I=1,IX DO nc = 1,ncuyes i = icuyes(nc) ! !...SEE IF IT IS NECESSARY TO CHECK FOR CONVECTIVE TRIGGERING AT THIS !...GRID POINT...IF NCA>0, CONVECTION IS ALREADY ACTIVE AT THIS POINT, !...JUST FEED BACK THE TENDENCIES SAVED FROM THE TIME WHEN CONVECTION !...WAS INITIATED. IF NCA<0, CONVECTION IS NOT ACTIVE !...AND YOU MAY WANT TO CHECK TO SEE IF IT CAN BE ACTIVATED FOR THE !...CURRENT CONDITIONS. IN PREVIOUS APLICATIONS OF THIS SCHEME, !...THE VARIABLE ICLDCK WAS USED BELOW TO SAVE TIME BY ONLY CHECKING !...FOR THE POSSIBILITY OF CONVECTIVE INITIATION EVERY 5 OR 10 !...MINUTES... ! IF(nca(i,j) >= 1) CYCLE ! IF (ICLDCK.NE.0) GO TO 325 ! p300=1000.*(psb(i,j)*a(i,j,kl)+ptop(i,j)-30.) ! !...INPUT A VERTICAL SOUNDING ... ! !...*********** NOTE THAT MODEL LAYERS ARE NUMBERED *************** !...*********** FROM THE BOTTOM-UP IN THE KF SCHEME *************** ! ml=0 cell=ptop(i,j)/psb(i,j) DO k=1,kx nk=kx-k+1 p0(k)=1.e3*(a(i,j,nk)*psb(i,j)+ptop(i,j)) t0(k)=tb(i,j,nk) q0(k)=qvb(i,j,nk) q0(k)=AMAX1(q0(k),1.0E-10) ! !...IF Q0 IS ABOVE SATURATION VALUE, REDUCE IT TO SATURATION LEVEL... ! es=aliq*EXP((bliq*t0(k)-cliq)/(t0(k)-dliq)) qes(k)=0.622*es/(p0(k)-es) q0(k)=AMIN1(qes(k),q0(k)) ql0(k)=0. qi0(k)=0. qr0(k)=0. qs0(k)=0. ! u0(k)=.25*(ub(i,j,nk)+ub(i+1,j,nk)+ub(i,j+1,nk)+ub(i+1,j+1,nk)) ! v0(k)=.25*(vb(i,j,nk)+vb(i+1,j,nk)+vb(i,j+1,nk)+vb(i+1,j+1,nk)) u0(k) = ub(i,j,nk) v0(k) = vb(i,j,nk) tv0(k)=t0(k)*(1.+b61*q0(k)) rhoe(k)=p0(k)/(r*tv0(k)) ! W0(K) = -101.9368*SCR9(I,NK)/RHOE(K) dp(k)=(sigma(i,j,nk+1)-sigma(i,j,nk))*psb(i,j)*1.e3 dzq(k)=rovg*tv0(k)*ALOG((sigma(i,j,nk+1)+cell)/ & (sigma(i,j,nk)+cell)) ! !...DZQ IS DZ BETWEEN SIGMA SURFACES, DZA IS DZ BETWEEN MODEL HALF LEVEL !...DP IS THE PRESSURE INTERVAL BETWEEN FULL SIGMA LEVELS... !... ! IF(p0(k) >= 500E2)l5=k IF(p0(k) >= 400E2)l4=k IF(p0(k) >= p300)llfc=k IF(t0(k) > t00)ml=k END DO z0(1)=.5*dzq(1) DO k=2,kl z0(k)=z0(k-1)+.5*(dzq(k)+dzq(k-1)) dza(k-1)=z0(k)-z0(k-1) END DO dza(kl)=0. ! KMIX=1 kmix=lsb(i) 25 low=kmix IF(low > llfc)CYCLE lc=low mxlayr=0 ! !...ASSUME THAT IN ORDER TO SUPPORT A DEEP UPDRAFT YOU NEED A LAYER OF !...UNSTABLE AIR 50 TO 100 mb DEEP...TO APPROXIMATE THIS, ISOLATE A !...GROUP OF ADJACENT INDIVIDUAL MODEL LAYERS, WITH THE BASE AT LEVEL !...LC, SUCH THAT THE COMBINED DEPTH OF THESE LAYERS IS AT LEAST 60 mb.. ! nlayrs=0 dpthmx=0. DO nk=lc,kx dpthmx=dpthmx+dp(nk) nlayrs=nlayrs+1 IF(dpthmx > 6.e3)GO TO 64 END DO CYCLE 64 kpbl=lc+nlayrs-1 ! KMIX=LC+1 ! !...go ahead and determine what level to start with for the !...next mixture in case the current mixture, with base at !...level LC, is not buoyant... !...instead of checking mixtures using every single layer, !...move up in increments of at least 25 mb... !...!!! make that 20 mb !!!!!! 9/15/97... !...!!! make that 15 mb !!!!!! 10/97... ! KMIX=LC+1 ! PM25 = P0(LC)-25.E2 ! PM20 = P0(LC)-20.E2 pm15 = p0(lc)-15.e2 DO nk = lc+1,kl ! IF(P0(NK).LT.PM25)THEN ! IF(P0(NK).LT.PM20)THEN IF(p0(nk) < pm15)THEN kmix = nk GO TO 67 END IF END DO CYCLE 67 CONTINUE thmix=0. qmix=0. zmix=0. pmix=0. dpthmx=0. ! !...FIND THE THERMODYNAMIC CHARACTERISTICS OF THE LAYER BY !...MASS-WEIGHTING THE CHARACTERISTICS OF THE INDIVIDUAL MODEL !...LAYERS... ! DO nk=lc,kpbl dpthmx=dpthmx+dp(nk) rocpq=0.2854*(1.-0.28*q0(nk)) thmix=thmix+dp(nk)*t0(nk)*(p00/p0(nk))**rocpq qmix=qmix+dp(nk)*q0(nk) zmix=zmix+dp(nk)*z0(nk) pmix=pmix+dp(nk)*p0(nk) END DO thmix=thmix/dpthmx qmix=qmix/dpthmx zmix=zmix/dpthmx pmix=pmix/dpthmx rocpq=0.2854*(1.-0.28*qmix) tmix=thmix*(pmix/p00)**rocpq emix=qmix*pmix/(0.622+qmix) ! !...FIND THE TEMPERATURE OF THE MIXTURE AT ITS LCL, PRESSURE !...LEVEL OF LCL... ! tlog=ALOG(emix/aliq) tdpt=(cliq-dliq*tlog)/(bliq-tlog) tlcl=tdpt-(.212+1.571E-3*(tdpt-t00)-4.36E-4*(tmix-t00))*(tmix- & tdpt) tlcl=AMIN1(tlcl,tmix) tvlcl=tlcl*(1.+0.608*qmix) cporq=1./rocpq plcl=p00*(tlcl/thmix)**cporq DO nk=lc,kl klcl=nk ! IF(PLCL.GE.P0(NK))GOTO 35 ! test IF(plcl >= p0(nk) .AND. klcl >= 2) GO TO 35 END DO CYCLE 35 k=klcl-1 dlp=ALOG(plcl/p0(k))/ALOG(p0(klcl)/p0(k)) ! !...ESTIMATE ENVIRONMENTAL TEMPERATURE AND MIXING RATIO AT THE LCL... ! tenv=t0(k)+(t0(klcl)-t0(k))*dlp qenv=q0(k)+(q0(klcl)-q0(k))*dlp tven=tenv*(1.+0.608*qenv) tvbar=0.5*(tv0(k)+tven) ! ZLCL=Z0(K)+R*TVBAR*ALOG(P0(K)/PLCL)/G zlcl=z0(k)+(z0(klcl)-z0(k))*dlp ! !...CHECK TO SEE IF CLOUD IS BUOYANT USING FRITSCH-CHAPPELL TRIGGER !...FUNCTION DESCRIBED IN KAIN AND FRITSCH (1992)...W0AVG IS AN !...APROXIMATE VALUE FOR THE RUNNING-MEAN GRID-SCALE VERTICAL !...VELOCITY, WHICH GIVES SMOOTHER FIELDS OF CONVECTIVE INITIATION !...THAN THE INSTANTANEOUS VALUE...FORMULA RELATING TEMPERATURE !...PERTURBATION TO VERTICAL VELOCITY HAS BEEN USED WITH THE MOST !...SUCCESS AT GRID LENGTHS NEAR 25 km. FOR DIFFERENT GRID-LENGTHS, !...ADJUST VERTICAL VELOCITY TO EQUIVALENT VALUE FOR 25 KM GRID !...LENGTH, ASSUMING LINEAR DEPENDENCE OF W ON GRID LENGTH... ! ! WKLCL=0.02*ZLCL/2.5E3 ! WKLCL=0.02*ZLCL/2.0E3 wklcl=0.02*zlcl/2.0E3 wkl=(w0avg(i,j,k)+(w0avg(i,j,klcl)-w0avg(i,j,k))*dlp)*dx/25.e3- & wklcl wabs=ABS(wkl)+1.e-10 wsigne=wkl/wabs dtlcl=4.64*wsigne*wabs**0.33 ! ! TO ALLOW SUB-SATURATION IN THE CUMULUS PARAMETERIZATION SCHEME ! ! Original Author: Jack Kain ! Slightly Modified By: Zuwen He, 04/2002 ! ! Original code from an email of Jack on 04/18/2002, which is his ! version for the ETA model to allow subsaturation. ! ! Quote: ! ! An additional term to the trigger function to enhance the ! likelihood of convective initiation when the environment ! at the LCL is near saturation. --- Jack ! ! End of quote ! ! rhsat is the threshold value for condensation to begin. This code ! is designed to give a maximum value of DTRH at a relative humidity ! of 95%, decreasing rapidly to zero for higher values of RH. DTRH ! is then added to DTLCL to determine whether a parcel might be ! buoyant at the LCL. ! ! BEGIN OF CODE OF ALLOWING SUB-SATURATION ! IF (kfsubsattrig == 1) THEN ! rhsat=0.75 ! IF(rhsat < 1.)THEN rhlcl = qenv/(qes(k)+(qes(klcl)-qes(k))*dlp) dqsdt_rh = qmix*(cliq-bliq*dliq)/((tlcl-dliq)*(tlcl-dliq)) if(rhlcl >= 0.75 .AND. rhlcl <= 0.95)THEN dtrh = 0.25*(rhlcl-0.75)*qmix/dqsdt_rh ELSEIF(rhlcl > 0.95)THEN dtrh = (1./rhlcl-1.)*qmix/dqsdt_rh ELSE dtrh = 0. ENDIF ! ENDIF dtlcl=dtlcl+dtrh END IF ! kfsubsattrig==1 ! ! END OF CODE OF ALLOWING SUB-SATURATION ! gdt=g*dtlcl*(zlcl-z0(lc))/(tv0(lc)+tven) wlcl=1.+.5*wsigne*SQRT(ABS(gdt)+1.e-10) IF(tlcl+dtlcl > tenv)GO TO 45 IF(kpbl >= llfc)CYCLE GO TO 25 ! !...CONVECTIVE TRIGGERING CRITERIA HAS BEEN SATISFIED...COMPUTE !...EQUIVALENT POTENTIAL TEMPERATURE !...(THETEU) AND VERTICAL VELOCITY OF THE RISING PARCEL AT THE LCL... ! 45 CONTINUE theteu(k)=tmix*(1.e5/pmix)**(0.2854*(1.-0.28*qmix))* & EXP((3374.6525/tlcl-2.5403)*qmix*(1.+0.81*qmix)) es=aliq*EXP((tenv*bliq-cliq)/(tenv-dliq)) tvavg=0.5*(tv0(klcl)+tenv*(1.+0.608*qenv)) plcl=p0(klcl)*EXP(g/(r*tvavg)*(z0(klcl)-zlcl)) qese=0.622*es/(plcl-es) gdt=g*dtlcl*(zlcl-z0(lc))/(tv0(lc)+tven) wlcl=1.+.5*wsigne*SQRT(ABS(gdt)+1.e-10) thtes(k)=tenv*(1.e5/plcl)**(0.2854*(1.-0.28*qese))* & EXP((3374.6525/tenv-2.5403)*qese*(1.+0.81*qese)) wtw=wlcl*wlcl IF(wlcl < 0.)GO TO 25 tvlcl=tlcl*(1.+0.608*qmix) rholcl=plcl/(r*tvlcl) ! lcl=klcl let=lcl ! !******************************************************************* ! * ! COMPUTE UPDRAFT PROPERTIES * ! * !******************************************************************* ! ! !...ESTIMATE INITIAL UPDRAFT MASS FLUX (UMF(K))... ! wu(k)=wlcl au0=pie*rad*rad umf(k)=rholcl*au0 vmflcl=umf(k) upold=vmflcl upnew=upold ! !...RATIO2 IS THE DEGREE OF GLACIATION IN THE CLOUD (0 TO 1), !...UER IS THE ENVIR ENTRAINMENT RATE, ABE IS AVAILABLE !...BUOYANT ENERGY, TRPPT IS THE TOTAL RATE OF PRECIPITATION !...PRODUCTION... ! ratio2(k)=0. uer(k)=0. abe=0. trppt=0. tu(k)=tlcl tvu(k)=tvlcl qu(k)=qmix eqfrc(k)=1. qliq(k)=0. qice(k)=0. qlqout(k)=0. qicout(k)=0. detlq(k)=0. detic(k)=0. pptliq(k)=0. pptice(k)=0. iflag=0 kfrz=lc ! !...THE AMOUNT OF CONV AVAIL POT ENERGY (CAPE) IS CALCULATED WITH !...RESPECT TO UNDILUTE PARCEL ASCENT; EQ POT TEMP OF UNDILUTE !...PARCEL IS THTUDL, UNDILUTE TEMPERATURE IS GIVEN BY TUDL... ! thtudl=theteu(k) tudl=tlcl ! !...TTEMP IS USED DURING CALCULATION OF THE LINEAR GLACIATION !...PROCESS; IT IS INITIALLY SET TO THE TEMPERATURE AT WHICH !...FREEZING IS SPECIFIED TO BEGIN. WITHIN THE GLACIATION !...INTERVAL, IT IS SET EQUAL TO THE UPDRAFT TEMP AT THE !...PREVIOUS MODEL LEVEL... ! ttemp=ttfrz ! !...ENTER THE LOOP FOR UPDRAFT CALCULATIONS...CALCULATE UPDRAFT TEMP, !...MIXING RATIO, VERTICAL MASS FLUX, LATERAL DETRAINMENT OF MASS AND !...MOISTURE, PRECIPITATION RATES AT EACH MODEL LEVEL... ! DO nk=k,klm nk1=nk+1 ratio2(nk1)=ratio2(nk) ! !...UPDATE UPDRAFT PROPERTIES AT THE NEXT MODEL LVL TO REFLECT !...ENTRAINMENT OF ENVIRONMENTAL AIR... ! frc1=0. tu(nk1)=t0(nk1) theteu(nk1)=theteu(nk) qu(nk1)=qu(nk) qliq(nk1)=qliq(nk) qice(nk1)=qice(nk) CALL tpmix(p0(nk1),theteu(nk1),tu(nk1),qu(nk1),qliq(nk1), & qice(nk1),qnewlq,qnewic,ratio2(nk1),rl,xlv0,xlv1, & xls0,xls1,aliq,bliq,cliq,dliq,aice,bice,cice,dice) tvu(nk1)=tu(nk1)*(1.+0.608*qu(nk1)) ! !...CHECK TO SEE IF UPDRAFT TEMP IS WITHIN THE FREEZING INTERVAL, !...IF IT IS, CALCULATE THE FRACTIONAL CONVERSION TO GLACIATION !...AND ADJUST QNEWLQ TO REFLECT THE GRADUAL CHANGE IN THETAU !...SINCE THE LAST MODEL LEVEL...THE GLACIATION EFFECTS WILL BE !...DETERMINED AFTER THE AMOUNT OF CONDENSATE AVAILABLE AFTER !...PRECIP FALLOUT IS DETERMINED...TTFRZ IS THE TEMP AT WHICH !...GLACIATION BEGINS, TBFRZ THE TEMP AT WHICH IT ENDS... ! IF(tu(nk1) <= ttfrz.AND.iflag < 1)THEN IF(tu(nk1) > tbfrz)THEN IF(ttemp > ttfrz)ttemp=ttfrz frc1=(ttemp-tu(nk1))/(ttfrz-tbfrz) r1=(ttemp-tu(nk1))/(ttemp-tbfrz) ELSE frc1=(ttemp-tbfrz)/(ttfrz-tbfrz) r1=1. iflag=1 END IF qnwfrz=qnewlq qnewic=qnewic+qnewlq*r1*0.5 qnewlq=qnewlq-qnewlq*r1*0.5 effq=(ttfrz-tbfrz)/(ttemp-tbfrz) ttemp=tu(nk1) END IF ! ! CALCULATE UPDRAFT VERTICAL VELOCITY AND PRECIPITATION FALLOUT... ! IF(nk == k)THEN be=(tvlcl+tvu(nk1))/(tven+tv0(nk1))-1. boterm=2.*(z0(nk1)-zlcl)*g*be/1.5 enterm=0. dzz=z0(nk1)-zlcl ELSE be=(tvu(nk)+tvu(nk1))/(tv0(nk)+tv0(nk1))-1. boterm=2.*dza(nk)*g*be/1.5 enterm=2.*uer(nk)*wtw/upold dzz=dza(nk) END IF wsq=wtw CALL condload(qliq(nk1),qice(nk1),wtw,dzz,boterm,enterm,rate, & qnewlq,qnewic,qlqout(nk1),qicout(nk1)) wabs=SQRT(ABS(wtw)) wu(nk1)=wtw/wabs ! !...IF VERT VELOCITY IS LESS THAN ZERO, EXIT THE UPDRAFT LOOP AND, !...IF CLOUD IS TALL ENOUGH, FINALIZE UPDRAFT CALCULATIONS... ! IF(wu(nk1) < 0.)EXIT ! ! UPDATE THE ABE FOR UNDILUTE ASCENT... ! thtes(nk1)=t0(nk1)* & (1.e5/p0(nk1))**(0.2854*(1.-0.28*qes(nk1)))* & EXP((3374.6525/t0(nk1)-2.5403)*qes(nk1)*(1.+0.81*qes(nk1))) udlbe=((2.*thtudl)/(thtes(nk)+thtes(nk1))-1.)*dzz IF(udlbe > 0.)abe=abe+udlbe*g ! ! DETERMINE THE EFFECTS OF CLOUD GLACIATION IF WITHIN THE SPECIFIED ! TEMP INTERVAL... ! IF(frc1 > 1.e-6)THEN CALL dtfrznew(tu(nk1),p0(nk1),theteu(nk1),qu(nk1),qliq(nk1), & qice(nk1),ratio2(nk1),ttfrz,tbfrz,qnwfrz,rl,frc1,effq, & iflag,xlv0,xlv1,xls0,xls1,aliq,bliq,cliq,dliq,aice,bice & ,cice,dice) END IF ! ! CALL SUBROUTINE TO CALCULATE ENVIRONMENTAL EQUIVALENT POTENTIAL TEMP. ! WITHIN GLACIATION INTERVAL, THETAE MUST BE CALCULATED WITH RESPECT TO ! SAME DEGREE OF GLACIATION FOR ALL ENTRAINING AIR... ! CALL envirtht(p0(nk1),t0(nk1),q0(nk1),thetee(nk1),ratio2(nk1), & rl,aliq,bliq,cliq,dliq,aice,bice,cice,dice) ! !...REI IS THE RATE OF ENVIRONMENTAL INFLOW... ! rei=vmflcl*dp(nk1)*0.03/rad tvqu(nk1)=tu(nk1)*(1.+0.608*qu(nk1)-qliq(nk1)-qice(nk1)) ! !...IF CLOUD PARCELS ARE VIRTUALLY COLDER THAN THE ENVIRONMENT, NO ! ENTRAINMENT IS ALLOWED AT THIS LEVEL... ! IF(tvqu(nk1) <= tv0(nk1))THEN uer(nk1)=0.0 udr(nk1)=rei ee2=0. ud2=1. eqfrc(nk1)=0. GO TO 55 END IF let=nk1 ttmp=tvqu(nk1) ! !...DETERMINE THE CRITICAL MIXED FRACTION OF UPDRAFT AND ENVIRONMENTAL !...FOR ESTIMATION OF ENTRAINMENT AND DETRAINMENT RATES... ! f1=0.95 f2=1.-f1 thttmp=f1*thetee(nk1)+f2*theteu(nk1) qtmp=f1*q0(nk1)+f2*qu(nk1) tmpliq=f2*qliq(nk1) tmpice=f2*qice(nk1) CALL tpmix(p0(nk1),thttmp,ttmp,qtmp,tmpliq,tmpice,qnewlq, & qnewic,ratio2(nk1),rl,xlv0,xlv1,xls0,xls1,aliq,bliq,cliq, & dliq,aice,bice,cice,dice) tu95=ttmp*(1.+0.608*qtmp-tmpliq-tmpice) IF(tu95 > tv0(nk1))THEN ee2=1. ud2=0. eqfrc(nk1)=1.0 GO TO 50 END IF f1=0.10 f2=1.-f1 thttmp=f1*thetee(nk1)+f2*theteu(nk1) qtmp=f1*q0(nk1)+f2*qu(nk1) tmpliq=f2*qliq(nk1) tmpice=f2*qice(nk1) CALL tpmix(p0(nk1),thttmp,ttmp,qtmp,tmpliq,tmpice,qnewlq, & qnewic,ratio2(nk1),rl,xlv0,xlv1,xls0,xls1,aliq,bliq,cliq, & dliq,aice,bice,cice,dice) tu10=ttmp*(1.+0.608*qtmp-tmpliq-tmpice) IF(tu10 == tvqu(nk1))THEN ee2=1. ud2=0. eqfrc(nk1)=1.0 GO TO 50 END IF eqfrc(nk1)=(tv0(nk1)-tvqu(nk1))*f1/(tu10-tvqu(nk1)) eqfrc(nk1)=AMAX1(0.0,eqfrc(nk1)) eqfrc(nk1)=AMIN1(1.0,eqfrc(nk1)) IF(eqfrc(nk1) == 1)THEN ee2=1. ud2=0. GO TO 50 ELSE IF(eqfrc(nk1) == 0.)THEN ee2=0. ud2=1. GO TO 50 ELSE ! !...SUBROUTINE PROF5 INTEGRATES OVER THE GAUSSIAN DIST TO DETERMINE THE ! FRACTIONAL ENTRAINMENT AND DETRAINMENT RATES... ! CALL prof5(eqfrc(nk1),ee2,ud2) END IF ! 50 IF(nk == k)THEN ee1=1. ud1=0. END IF ! !...NET ENTRAINMENT AND DETRAINMENT RATES ARE GIVEN BY THE AVERAGE FRACT ! VALUES IN THE LAYER... ! uer(nk1)=0.5*rei*(ee1+ee2) udr(nk1)=0.5*rei*(ud1+ud2) ! !...IF THE CALCULATED UPDRAFT DETRAINMENT RATE IS GREATER THAN THE TOTAL ! UPDRAFT MASS FLUX, ALL CLOUD MASS DETRAINS, EXIT UPDRAFT CALCULATION ! 55 IF(umf(nk)-udr(nk1) < 10.)THEN ! !...IF THE CALCULATED DETRAINED MASS FLUX IS GREATER THAN THE TOTAL UPD ! FLUX, IMPOSE TOTAL DETRAINMENT OF UPDRAFT MASS AT THE PREVIOUS MODEL ! IF(udlbe > 0.)abe=abe-udlbe*g let=nk ! WRITE(98,1015)P0(NK1)/100. EXIT END IF ee1=ee2 ud1=ud2 upold=umf(nk)-udr(nk1) upnew=upold+uer(nk1) umf(nk1)=upnew ! !...DETLQ AND DETIC ARE THE RATES OF DETRAINMENT OF LIQUID AND ICE IN TH ! DETRAINING UPDRAFT MASS... ! detlq(nk1)=qliq(nk1)*udr(nk1) detic(nk1)=qice(nk1)*udr(nk1) qdt(nk1)=qu(nk1) qu(nk1)=(upold*qu(nk1)+uer(nk1)*q0(nk1))/upnew theteu(nk1)=(theteu(nk1)*upold+thetee(nk1)*uer(nk1))/upnew qliq(nk1)=qliq(nk1)*upold/upnew qice(nk1)=qice(nk1)*upold/upnew ! !...KFRZ IS THE HIGHEST MODEL LEVEL AT WHICH LIQUID CONDENSATE IS GENERA ! PPTLIQ IS THE RATE OF GENERATION (FALLOUT) OF LIQUID PRECIP AT A GIV ! MODEL LVL, PPTICE THE SAME FOR ICE, TRPPT IS THE TOTAL RATE OF PRODU ! OF PRECIP UP TO THE CURRENT MODEL LEVEL... ! IF(ABS(ratio2(nk1)-1.) > 1.e-6)kfrz=nk1 pptliq(nk1)=qlqout(nk1)*(umf(nk)-udr(nk1)) pptice(nk1)=qicout(nk1)*(umf(nk)-udr(nk1)) trppt=trppt+pptliq(nk1)+pptice(nk1) IF(nk1 <= kpbl)uer(nk1)=uer(nk1)+vmflcl*dp(nk1)/dpthmx END DO ! !...CHECK CLOUD DEPTH...IF CLOUD IS TALL ENOUGH, ESTIMATE THE EQUILIBRIU ! TEMPERATURE LEVEL (LET) AND ADJUST MASS FLUX PROFILE AT CLOUD TOP SO ! THAT MASS FLUX DECREASES TO ZERO AS A LINEAR FUNCTION OF PRESSURE BE ! THE LET AND CLOUD TOP... ! !...LTOP IS THE MODEL LEVEL JUST BELOW THE LEVEL AT WHICH VERTICAL VELOC ! FIRST BECOMES NEGATIVE... ! ltop=nk cldhgt=z0(ltop)-zlcl ! !...IF CLOUD TOP HGT IS LESS THAN SPECIFIED MINIMUM HEIGHT, GO BACK AND ! THE NEXT HIGHEST 60MB LAYER TO SEE IF A BIGGER CLOUD CAN BE OBTAINED ! THAT SOURCE AIR... ! ! IF(CLDHGT.LT.4.E3.OR.ABE.LT.1.)THEN ! JSK MODS IF(cldhgt < 3.e3.OR.abe < 1.)THEN ! JSK MODS DO nk=k,ltop umf(nk)=0. udr(nk)=0. uer(nk)=0. detlq(nk)=0. detic(nk)=0. pptliq(nk)=0. pptice(nk)=0. END DO GO TO 25 END IF ! !...IF THE LET AND LTOP ARE THE SAME, DETRAIN ALL OF THE UPDRAFT MASS FL ! THIS LEVEL... ! IF(let == ltop)THEN udr(ltop)=umf(ltop)+udr(ltop)-uer(ltop) detlq(ltop)=qliq(ltop)*udr(ltop)*upnew/upold detic(ltop)=qice(ltop)*udr(ltop)*upnew/upold trppt=trppt-(pptliq(ltop)+pptice(ltop)) uer(ltop)=0. umf(ltop)=0. GO TO 85 END IF ! ! BEGIN TOTAL DETRAINMENT AT THE LEVEL ABOVE THE LET... ! dptt=0. DO nj=let+1,ltop dptt=dptt+dp(nj) END DO dumfdp=umf(let)/dptt ! !...ADJUST MASS FLUX PROFILES, DETRAINMENT RATES, AND PRECIPITATION FALL ! RATES TO REFLECT THE LINEAR DECREASE IN MASS FLX BETWEEN THE LET AND ! DO nk=let+1,ltop udr(nk)=dp(nk)*dumfdp umf(nk)=umf(nk-1)-udr(nk) detlq(nk)=qliq(nk)*udr(nk) detic(nk)=qice(nk)*udr(nk) trppt=trppt-pptliq(nk)-pptice(nk) pptliq(nk)=(umf(nk-1)-udr(nk))*qlqout(nk) pptice(nk)=(umf(nk-1)-udr(nk))*qicout(nk) trppt=trppt+pptliq(nk)+pptice(nk) END DO ! !...SEND UPDRAFT CHARACTERISTICS TO OUTPUT FILES... ! 85 CONTINUE ! WRITE(98,3001) ! 3001 FORMAT(' ') ! WRITE(98,3002)XTIME,INEST,I,J ! 3002 FORMAT('XTIME =',f9.2,', INEST =',i2,', GRID POINT: I =',i2, & ! ' J =',i2) ! IF(MXLAYR.EQ.1)THEN ! PRINT *,'HFX, QFX, PBL, THGV =',HFX(I,J),QFX(I,J),PBL(I,J),THGV ! PRINT *,'RHOE(1), WPTHP, WPQP, WPTHVP, WSTR =',RHOE(1),WPTHP,WPQP, ! *WPTHVP,WSTR ! ENDIF ! PRINT *,'PRS AT BASE OF UPDRAFT SOURCE LAYER =',P0(LC)/100. ! PRINT *,'DEPTH OF UPDRAFT SOURCE MIXED LAYER =',DPTHMX/100. ! PRINT 1000,' P ',' VMFU ',' TU ',' EQFRC',' CLDWAT ', ! *' CLDICE ',' PPTLIQ ',' PPTICE ',' DETLQ ',' DETIC ' ! DO 1020 NK=KLCL-1,LTOP ! IF(NK.EQ.KLCL-1)THEN ! PRS=PLCL/100. ! ELSE ! PRS=P0(NK)/100. ! ENDIF !C PRS=CVMGT(PLCL/100.,P0(NK)/100.,NK.EQ.KLCL-1) ! PRINT 1005,PRS,UMF(NK)/VMFLCL,TU(NK)-273.16,EQFRC(NK), ! * QLIQ(NK)*1.E3,QICE(NK)*1.E3,QLQOUT(NK)*1.E3,QICOUT(NK)*1.E3, ! * DETLQ(NK)/1.E3,DETIC(NK)/1.E3 !1020 CONTINUE ! PRINT 1010,P0(NK1)/100. ! !...EXTEND THE UPDRAFT MASS FLUX PROFILE DOWN TO THE SOURCE LAYER FOR TH ! UPDRAFT AIR...ALSO, DEFINE THETAE FOR LEVELS BELOW THE LCL... ! DO nk=1,k IF(nk >= lc)THEN IF(nk == lc)THEN umf(nk)=vmflcl*dp(nk)/dpthmx uer(nk)=vmflcl*dp(nk)/dpthmx ELSE IF(nk <= kpbl)THEN uer(nk)=vmflcl*dp(nk)/dpthmx umf(nk)=umf(nk-1)+uer(nk) ELSE umf(nk)=vmflcl uer(nk)=0. END IF tu(nk)=tmix+(z0(nk)-zmix)*gdry qu(nk)=qmix wu(nk)=wlcl ELSE tu(nk)=0. qu(nk)=0. umf(nk)=0. wu(nk)=0. uer(nk)=0. END IF udr(nk)=0. qdt(nk)=0. qliq(nk)=0. qice(nk)=0. qlqout(nk)=0. qicout(nk)=0. pptliq(nk)=0. pptice(nk)=0. detlq(nk)=0. detic(nk)=0. ratio2(nk)=0. ee=q0(nk)*p0(nk)/(0.622+q0(nk)) tlog=ALOG(ee/aliq) tdpt=(cliq-dliq*tlog)/(bliq-tlog) tsat=tdpt-(.212+1.571E-3*(tdpt-t00)-4.36E-4*(t0(nk)-t00))*( & t0(nk)-tdpt) thta=t0(nk)*(1.e5/p0(nk))**(0.2854*(1.-0.28*q0(nk))) thetee(nk)=thta* & EXP((3374.6525/tsat-2.5403)*q0(nk)*(1.+0.81*q0(nk)) & ) thtes(nk)=thta* & EXP((3374.6525/t0(nk)-2.5403)*qes(nk)*(1.+0.81* & qes(nk))) eqfrc(nk)=1.0 END DO ! ltop1=ltop+1 ltopm1=ltop-1 ! !...DEFINE VARIABLES ABOVE CLOUD TOP... ! DO nk=ltop1,kx umf(nk)=0. udr(nk)=0. uer(nk)=0. qdt(nk)=0. qliq(nk)=0. qice(nk)=0. qlqout(nk)=0. qicout(nk)=0. detlq(nk)=0. detic(nk)=0. pptliq(nk)=0. pptice(nk)=0. IF(nk > ltop1)THEN tu(nk)=0. qu(nk)=0. wu(nk)=0. END IF thta0(nk)=0. thtau(nk)=0. ems(nk)=dp(nk)*dxsq/g emsd(nk)=1./ems(nk) tg(nk)=t0(nk) qg(nk)=q0(nk) qlg(nk)=0. qig(nk)=0. qrg(nk)=0. qsg(nk)=0. omg(nk)=0. END DO omg(kxp1)=0. p150=p0(klcl)-1.50E4 DO nk=1,ltop ems(nk)=dp(nk)*dxsq/g emsd(nk)=1./ems(nk) ! !...INITIALIZE SOME VARIABLES TO BE USED LATER IN THE VERT ADVECTION SCH ! exn(nk)=(p00/p0(nk))**(0.2854*(1.-0.28*qdt(nk))) thtau(nk)=tu(nk)*exn(nk) exn(nk)=(p00/p0(nk))**(0.2854*(1.-0.28*q0(nk))) thta0(nk)=t0(nk)*exn(nk) ! !...LVF IS THE LEVEL AT WHICH MOISTURE FLUX IS ESTIMATED AS THE BASIS FO !...PRECIPITATION EFFICIENCY CALCULATIONS... ! IF(p0(nk) > p150)lvf=nk omg(nk)=0. END DO lvf=MIN0(lvf,let) ! JSK MODS usr=umf(lvf+1)*(qu(lvf+1)+qliq(lvf+1)+qice(lvf+1)) usr=AMIN1(usr,trppt) ! ! WRITE(98,1025)KLCL,ZLCL,DTLCL,LTOP,P0(LTOP),IFLAG, ! * TMIX-T00,PMIX,QMIX,ABE ! WRITE(98,1030)P0(LET)/100.,P0(LTOP)/100.,VMFLCL,PLCL/100., ! * WLCL,CLDHGT ! !...COMPUTE CONVECTIVE TIME SCALE(TIMEC). THE MEAN WIND AT THE LCL !...AND MIDTROPOSPHERE IS USED. ! wspd(klcl)=SQRT(u0(klcl)*u0(klcl)+v0(klcl)*v0(klcl)) wspd(l5)=SQRT(u0(l5)*u0(l5)+v0(l5)*v0(l5)) wspd(ltop)=SQRT(u0(ltop)*u0(ltop)+v0(ltop)*v0(ltop)) vconv=.5*(wspd(klcl)+wspd(l5)) timec=dx/vconv tadvec=timec timec=AMAX1(1800.,timec) timec=AMIN1(3600.,timec) nic=nint(timec/(.5*dt2)) timec=FLOAT(nic)*.5*dt2 ! !...COMPUTE WIND SHEAR AND PRECIPITATION EFFICIENCY. ! ! SHSIGN = CVMGT(1.,-1.,WSPD(LTOP).GT.WSPD(KLCL)) IF(wspd(ltop) > wspd(klcl))THEN shsign=1. ELSE shsign=-1. END IF vws=(u0(ltop)-u0(klcl))*(u0(ltop)-u0(klcl))+(v0(ltop)-v0(klcl))* & (v0(ltop)-v0(klcl)) vws=1.e3*shsign*SQRT(vws)/(z0(ltop)-z0(lcl)) pef=1.591+vws*(-.639+vws*(9.53E-2-vws*4.96E-3)) pef=AMAX1(pef,.2) pef=AMIN1(pef,.9) ! !...PRECIPITATION EFFICIENCY IS A FUNCTION OF THE HEIGHT OF CLOUD BASE. ! cbh=(zlcl-z0(1))*3.281E-3 IF(cbh < 3.)THEN rcbh=.02 ELSE rcbh=.96729352+cbh*(-.70034167+cbh*(.162179896+cbh*(- & 1.2569798E-2+cbh*(4.2772E-4-cbh*5.44E-6)))) END IF IF(cbh > 25)rcbh=2.4 pefcbh=1./(1.+rcbh) pefcbh=AMIN1(pefcbh,.9) ! !... MEAN PEF. IS USED TO COMPUTE RAINFALL. ! peff=.5*(pef+pefcbh) peff2 = peff ! JSK MODS ! ! WRITE(98,1035)PEF,PEFCBH,LC,LET,WKL,VWS ! !***************************************************************** ! * ! COMPUTE DOWNDRAFT PROPERTIES * ! * !***************************************************************** ! !...LET DOWNDRAFT ORIGINATE AT THE LEVEL OF MINIMUM SATURATION EQUIVALEN !...POTENTIAL TEMPERATURE (SEQT) IN THE CLOUD LAYER, EXTEND DOWNWARD TO !...SURFACE, OR TO THE LAYER BELOW CLOUD BASE AT WHICH ENVIR SEQT IS LES !...THAN MIN SEQT IN THE CLOUD LAYER...LET DOWNDRAFT DETRAIN OVER A LAYE !...OF SPECIFIED PRESSURE-DEPTH (DPDD)... ! tder=0. kstart=MAX0(kpbl,klcl) thtmin=thtes(kstart+1) kmin=kstart+1 DO nk=kstart+2,ltop-1 thtmin=AMIN1(thtmin,thtes(nk)) IF(thtmin == thtes(nk))kmin=nk END DO lfs=kmin IF(ratio2(lfs) > 0.)CALL envirtht(p0(lfs),t0(lfs),q0(lfs), & thetee(lfs),0.,rl,aliq,bliq,cliq,dliq,aice,bice,cice,dice) eqfrc(lfs)=(thtes(lfs)-theteu(lfs))/(thetee(lfs)-theteu(lfs)) eqfrc(lfs)=AMAX1(eqfrc(lfs),0.) eqfrc(lfs)=AMIN1(eqfrc(lfs),1.) theted(lfs)=thtes(lfs) ! !...ESTIMATE THE EFFECT OF MELTING PRECIPITATION IN THE DOWNDRAFT... ! IF(ml > 0)THEN dtmltd=0.5*(qu(klcl)-qu(ltop))*rlf/cp ELSE dtmltd=0. END IF tz(lfs)=t0(lfs)-dtmltd es=aliq*EXP((tz(lfs)*bliq-cliq)/(tz(lfs)-dliq)) qs=0.622*es/(p0(lfs)-es) qd(lfs)=eqfrc(lfs)*q0(lfs)+(1.-eqfrc(lfs))*qu(lfs) thtad(lfs)=tz(lfs)*(p00/p0(lfs))**(0.2854*(1.-0.28*qd(lfs))) IF(qd(lfs) >= qs)THEN theted(lfs)=thtad(lfs)* & EXP((3374.6525/tz(lfs)-2.5403)*qs*(1.+0.81*qs)) ELSE CALL envirtht(p0(lfs),tz(lfs),qd(lfs),theted(lfs),0.,rl,aliq, & bliq,cliq,dliq,aice,bice,cice,dice) END IF DO nk=1,lfs nd=lfs-nk IF(theted(lfs) > thtes(nd).OR.nd == 1)THEN ldb=nd ! JSK MODS !...IF DOWNDRAFT NEVER BECOMES NEGATIVELY BUOYANT OR IF IT ! JSK MODS !...IS SHALLOWER 50 mb, DON'T ALLOW IT TO OCCUR AT ALL... ! JSK MODS ! JSK MODS IF(nk == 1.OR.(p0(ldb)-p0(lfs)) < 50.e2)GO TO 141 ! JSK MODS EXIT END IF END DO ! !...ALLOW DOWNDRAFT TO DETRAIN IN A SINGLE LAYER, BUT WITH DOWNDRAFT AIR !...TYPICALLY FLUSHED UP INTO HIGHER LAYERS AS ALLOWED IN THE TOTAL !...VERTICAL ADVECTION CALCULATIONS FARTHER DOWN IN THE CODE... ! dpdd=dp(ldb) ldt=ldb frc=1. dpt=0. ! DO 115 NK=LDB,LFS ! DPT=DPT+DP(NK) ! IF(DPT.GT.DPDD)THEN ! LDT=NK ! FRC=(DPDD+DP(NK)-DPT)/DP(NK) ! GOTO 120 ! ENDIF ! IF(NK.EQ.LFS-1)THEN ! LDT=NK ! FRC=1. ! DPDD=DPT ! GOTO 120 ! ENDIF !115 CONTINUE ! 120 CONTINUE ! !...TAKE A FIRST GUESS AT THE INITIAL DOWNDRAFT MASS FLUX... ! tvd(lfs)=t0(lfs)*(1.+0.608*qes(lfs)) rdd=p0(lfs)/(r*tvd(lfs)) a1=(1.-peff)*au0 dmf(lfs)=-a1*rdd der(lfs)=eqfrc(lfs)*dmf(lfs) ddr(lfs)=0. DO nd=lfs-1,ldb,-1 nd1=nd+1 IF(nd <= ldt)THEN der(nd)=0. ddr(nd)=-dmf(ldt+1)*dp(nd)*frc/dpdd dmf(nd)=dmf(nd1)+ddr(nd) frc=1. theted(nd)=theted(nd1) qd(nd)=qd(nd1) ELSE der(nd)=dmf(lfs)*0.03*dp(nd)/rad ddr(nd)=0. dmf(nd)=dmf(nd1)+der(nd) IF(ratio2(nd) > 0.)CALL envirtht(p0(nd),t0(nd),q0(nd), & thetee(nd),0.,rl,aliq,bliq,cliq,dliq,aice,bice,cice,dice) theted(nd)=(theted(nd1)*dmf(nd1)+thetee(nd)*der(nd))/dmf(nd) qd(nd)=(qd(nd1)*dmf(nd1)+q0(nd)*der(nd))/dmf(nd) END IF END DO tder=0. ! !...CALCULATION AN EVAPORATION RATE FOR GIVEN MASS FLUX... ! DO nd=ldb,ldt tz(nd)= & tpdd(p0(nd),theted(ldt),t0(nd),qs,qd(nd),1.0,xlv0,xlv1, & aliq,bliq,cliq,dliq,aice,bice,cice,dice) es=aliq*EXP((tz(nd)*bliq-cliq)/(tz(nd)-dliq)) qs=0.622*es/(p0(nd)-es) dssdt=(cliq-bliq*dliq)/((tz(nd)-dliq)*(tz(nd)-dliq)) rl=xlv0-xlv1*tz(nd) dtmp=rl*qs*(1.-rhbc)/(cp+rl*rhbc*qs*dssdt) t1rh=tz(nd)+dtmp es=rhbc*aliq*EXP((bliq*t1rh-cliq)/(t1rh-dliq)) qsrh=0.622*es/(p0(nd)-es) ! !...CHECK TO SEE IF MIXING RATIO AT SPECIFIED RH IS LESS THAN ACTUAL !...MIXING RATIO...IF SO, ADJUST TO GIVE ZERO EVAPORATION... ! IF(qsrh < qd(nd))THEN qsrh=qd(nd) ! T1RH=T1+(QS-QSRH)*RL/CP t1rh=tz(nd) END IF tz(nd)=t1rh qs=qsrh tder=tder+(qs-qd(nd))*ddr(nd) qd(nd)=qs thtad(nd)=tz(nd)*(p00/p0(nd))**(0.2854*(1.-0.28*qd(nd))) END DO ! !...IF DOWNDRAFT DOES NOT EVAPORATE ANY WATER FOR SPECIFIED RELATIVE !...HUMIDITY, NO DOWNDRAFT IS ALLOWED... ! 141 IF(tder < 1.)THEN ! WRITE(98,3004)I,J ! 3004 FORMAT(' ','I=',i3,2X,'J=',i3) pptflx=trppt cpr=trppt tder=0. cndtnf=0. updinc=1. ldb=lfs DO ndk=1,ltop dmf(ndk)=0. der(ndk)=0. ddr(ndk)=0. thtad(ndk)=0. wd(ndk)=0. tz(ndk)=0. qd(ndk)=0. END DO aincm2=100. GO TO 165 END IF ! !...ADJUST DOWNDRAFT MASS FLUX SO THAT EVAPORATION RATE IN DOWNDRAFT IS !...CONSISTENT WITH PRECIPITATION EFFICIENCY RELATIONSHIP... ! devdmf=tder/dmf(lfs) ppr=0. pptflx=peff*usr rced=trppt-pptflx ! !...PPR IS THE TOTAL AMOUNT OF PRECIPITATION THAT FALLS OUT OF THE UPDR !...FROM CLOUD BASE TO THE LFS...UPDRAFT MASS FLUX WILL BE INCREASED UP !...THE LFS TO ACCOUNT FOR UPDRAFT AIR MIXING WITH ENVIRONMENTAL AIR TO !...THE UPDRAFT, SO PPR WILL INCREASE PROPORTIONATELY... ! DO nm=klcl,lfs ppr=ppr+pptliq(nm)+pptice(nm) END DO IF(lfs >= klcl)THEN dpptdf=(1.-peff)*ppr*(1.-eqfrc(lfs))/umf(lfs) ELSE dpptdf=0. END IF ! !...CNDTNF IS THE AMOUNT OF CONDENSATE TRANSFERRED ALONG WITH UPDRAFT MA !...THE DOWNDRAFT AT THE LFS... ! cndtnf=(qliq(lfs)+qice(lfs))*(1.-eqfrc(lfs)) dmflfs=rced/(devdmf+dpptdf+cndtnf) IF(dmflfs > 0.)THEN tder=0. GO TO 141 END IF ! !...DDINC IS THE FACTOR BY WHICH TO INCREASE THE FIRST-GUESS DOWNDRAFT M !...FLUX TO SATISFY THE PRECIP EFFICIENCY RELATIONSHIP, UPDINC IS THE FA !...WHICH TO INCREASE THE UPDRAFT MASS FLUX BELOW THE LFS TO ACCOUNT FOR !...TRANSFER OF MASS FROM UPDRAFT TO DOWNDRAFT... ! ! DDINC=DMFLFS/DMF(LFS) ! JSK MODS IF(lfs >= klcl)THEN updinc=(umf(lfs)-(1.-eqfrc(lfs))*dmflfs)/umf(lfs) ! JSK MODS !...LIMIT UPDINC TO LESS THAN OR EQUAL TO 1.5... ! JSK MODS ! JSK MODS IF(updinc > 1.5)THEN ! JSK MODS updinc = 1.5 ! JSK MODS dmflfs2 = umf(lfs)*(updinc-1.)/(eqfrc(lfs)-1.) ! JSK MODS rced2 = dmflfs2*(devdmf+dpptdf+cndtnf) ! JSK MODS pptflx = pptflx+(rced-rced2) ! JSK MODS peff2 = pptflx/usr ! JSK MODS rced = rced2 ! JSK MODS dmflfs = dmflfs2 ! JSK MODS END IF ! JSK MODS ELSE updinc=1. END IF ddinc=dmflfs/dmf(lfs) ! JSK MODS DO nk=ldb,lfs dmf(nk)=dmf(nk)*ddinc der(nk)=der(nk)*ddinc ddr(nk)=ddr(nk)*ddinc END DO cpr=trppt+ppr*(updinc-1.) pptflx=pptflx+peff*ppr*(updinc-1.) peff=peff2 ! JSK MODS tder=tder*ddinc ! !...ADJUST UPDRAFT MASS FLUX, MASS DETRAINMENT RATE, AND LIQUID WATER AN ! DETRAINMENT RATES TO BE CONSISTENT WITH THE TRANSFER OF THE ESTIMATE ! FROM THE UPDRAFT TO THE DOWNDRAFT AT THE LFS... ! DO nk=lc,lfs umf(nk)=umf(nk)*updinc udr(nk)=udr(nk)*updinc uer(nk)=uer(nk)*updinc pptliq(nk)=pptliq(nk)*updinc pptice(nk)=pptice(nk)*updinc detlq(nk)=detlq(nk)*updinc detic(nk)=detic(nk)*updinc END DO ! !...ZERO OUT THE ARRAYS FOR DOWNDRAFT DATA AT LEVELS ABOVE AND BELOW THE !...DOWNDRAFT... ! IF(ldb > 1)THEN DO nk=1,ldb-1 dmf(nk)=0. der(nk)=0. ddr(nk)=0. wd(nk)=0. tz(nk)=0. qd(nk)=0. thtad(nk)=0. END DO END IF DO nk=lfs+1,kx dmf(nk)=0. der(nk)=0. ddr(nk)=0. wd(nk)=0. tz(nk)=0. qd(nk)=0. thtad(nk)=0. END DO DO nk=ldt+1,lfs-1 tz(nk)=0. qd(nk)=0. thtad(nk)=0. ! JSK MODS END DO ! !...SET LIMITS ON THE UPDRAFT AND DOWNDRAFT MASS FLUXES SO THAT THE INFL ! INTO CONVECTIVE DRAFTS FROM A GIVEN LAYER IS NO MORE THAN IS AVAILAB ! IN THAT LAYER INITIALLY... ! 165 aincmx=1000. lmax=MAX0(klcl,lfs) DO nk=lc,lmax IF((uer(nk)-der(nk)) > 0.)aincm1=ems(nk)/((uer(nk)-der(nk))* timec) aincmx=AMIN1(aincmx,aincm1) END DO ainc=1. IF(aincmx < ainc)ainc=aincmx ! !...SAVE THE RELEVENT VARIABLES FOR A UNIT UPDRFT AND DOWNDRFT...THEY WI !...ITERATIVELY ADJUSTED BY THE FACTOR AINC TO SATISFY THE STABILIZATION !...CLOSURE... ! ncount=0 tder2=tder pptfl2=pptflx DO nk=1,ltop detlq2(nk)=detlq(nk) detic2(nk)=detic(nk) udr2(nk)=udr(nk) uer2(nk)=uer(nk) ddr2(nk)=ddr(nk) der2(nk)=der(nk) umf2(nk)=umf(nk) dmf2(nk)=dmf(nk) END DO fabe=1. stab=0.95 ! XNIN=AMIN0(I,J,ILX-I,JLX-J) ! IF(XNIN.LT.5)STAB=STAB*(XNIN-1.)*0.25 noitr=0 IF(ainc/aincmx > 0.999)THEN ncount=0 GO TO 255 END IF istop=0 175 ncount=ncount+1 ! !***************************************************************** ! * ! COMPUTE PROPERTIES FOR COMPENSATIONAL SUBSIDENCE * ! * !***************************************************************** ! !...DETERMINE OMEGA VALUE NECESSARY AT TOP AND BOTTOM OF EACH LAYER TO !...SATISFY MASS CONTINUITY... ! ! 185 CONTINUE dtt=timec DO nk=1,ltop domgdp(nk)=-(uer(nk)-der(nk)-udr(nk)-ddr(nk))*emsd(nk) IF(nk > 1)THEN omg(nk)=omg(nk-1)-dp(nk-1)*domgdp(nk-1) dtt1=0.75*dp(nk-1)/(ABS(omg(nk))+1.e-10) dtt=AMIN1(dtt,dtt1) END IF END DO DO nk=1,ltop thpa(nk)=thta0(nk) qpa(nk)=q0(nk) nstep=nint(timec/dtt+1) dtime=timec/FLOAT(nstep) fxm(nk)=omg(nk)*dxsq/g END DO ! !...DO AN UPSTREAM/FORWARD-IN-TIME ADVECTION OF THETA, QV... ! DO ntc=1,nstep ! !...ASSIGN THETA AND Q VALUES AT THE TOP AND BOTTOM OF EACH LAYER BASED !...SIGN OF OMEGA... ! DO nk=1,ltop thfxin(nk)=0. thfxout(nk)=0. qfxin(nk)=0. qfxout(nk)=0. END DO DO nk=2,ltop IF(omg(nk) <= 0.)THEN thfxin(nk)=-fxm(nk)*thpa(nk-1) qfxin(nk)=-fxm(nk)*qpa(nk-1) thfxout(nk-1)=thfxout(nk-1)+thfxin(nk) qfxout(nk-1)=qfxout(nk-1)+qfxin(nk) ELSE thfxout(nk)=fxm(nk)*thpa(nk) qfxout(nk)=fxm(nk)*qpa(nk) thfxin(nk-1)=thfxin(nk-1)+thfxout(nk) qfxin(nk-1)=qfxin(nk-1)+qfxout(nk) END IF END DO ! !...UPDATE THE THETA AND QV VALUES AT EACH LEVEL... ! DO nk=1,ltop thpa(nk)=thpa(nk)+(thfxin(nk)+udr(nk)*thtau(nk)+ddr(nk)* & thtad(nk)-thfxout(nk)-(uer(nk)-der(nk))*thta0(nk))* & dtime*emsd(nk) qpa(nk)=qpa(nk)+(qfxin(nk)+udr(nk)*qdt(nk)+ddr(nk)*qd(nk)- & qfxout(nk)-(uer(nk)-der(nk))*q0(nk))*dtime*emsd(nk) END DO END DO DO nk=1,ltop thtag(nk)=thpa(nk) qg(nk)=qpa(nk) END DO ! !...CHECK TO SEE IF MIXING RATIO DIPS BELOW ZERO ANYWHERE; IF SO, BORRO !...MOISTURE FROM ADJACENT LAYERS TO BRING IT BACK UP ABOVE ZERO... ! DO nk=1,ltop IF(qg(nk) < 0.)THEN IF(nk == 1)THEN ! JSK MODS PRINT *,'!!!!! PROBLEM WITH KF SCHEME: ' ! JSK MODS PRINT *,'QG = 0 AT THE SURFACE!!!!!!!' ! JSK MODS CALL arpsstop('QG',1) ! JSK MODS END IF ! JSK MODS nk1=nk+1 IF(nk == ltop)nk1=klcl tma=qg(nk1)*ems(nk1) tmb=qg(nk-1)*ems(nk-1) tmm=(qg(nk)-1.e-9)*ems(nk ) bcoeff=-tmm/((tma*tma)/tmb+tmb) acoeff=bcoeff*tma/tmb tmb=tmb*(1.-bcoeff) tma=tma*(1.-acoeff) IF(nk == ltop)THEN qvdiff=(qg(nk1)-tma*emsd(nk1))*100./qg(nk1) IF(ABS(qvdiff) > 1.)THEN PRINT *,'& !!!WARNING!!! CLOUD BASE WATER VAPOR CHANGES BY ', & qvdiff,'% WHEN MOISTURE IS BORROWED TO PREVENT NEGATIVE ', & 'VALUES IN KAIN-FRITSCH' END IF END IF qg(nk)=1.e-9 qg(nk1)=tma*emsd(nk1) qg(nk-1)=tmb*emsd(nk-1) END IF END DO topomg=(udr(ltop)-uer(ltop))*dp(ltop)*emsd(ltop) IF(ABS(topomg-omg(ltop)) > 1.e-3)THEN ! WRITE(98,*)'ERROR: MASS DOES NOT BALANCE IN KF SCHEME; ! * TOPOMG, OMG =',TOPOMG,OMG(LTOP) WRITE(6,*) & 'ERROR: MASS DOES NOT BALANCE IN KF SCHEME; topomg, omg =', & TOPOMG,OMG(LTOP) istop=1 GO TO 265 END IF ! !...CONVERT THETA TO T... ! DO nk=1,ltop exn(nk)=(p00/p0(nk))**(0.2854*(1.-0.28*qg(nk))) tg(nk)=thtag(nk)/exn(nk) tvg(nk)=tg(nk)*(1.+0.608*qg(nk)) END DO ! !******************************************************************* ! * ! COMPUTE NEW CLOUD AND CHANGE IN AVAILABLE BUOYANT ENERGY. * ! * !******************************************************************* ! !...THE FOLLOWING COMPUTATIONS ARE SIMILAR TO THAT FOR UPDRAFT ! thmix=0. qmix=0. pmix=0. DO nk=lc,kpbl rocpq=0.2854*(1.-0.28*qg(nk)) thmix=thmix+dp(nk)*tg(nk)*(p00/p0(nk))**rocpq qmix=qmix+dp(nk)*qg(nk) pmix=pmix+dp(nk)*p0(nk) END DO thmix=thmix/dpthmx qmix=qmix/dpthmx pmix=pmix/dpthmx rocpq=0.2854*(1.-0.28*qmix) tmix=thmix*(pmix/p00)**rocpq es=aliq*EXP((tmix*bliq-cliq)/(tmix-dliq)) qs=0.622*es/(pmix-es) ! !...REMOVE SUPERSATURATION FOR DIAGNOSTIC PURPOSES, IF NECESSARY... ! IF(qmix > qs)THEN rl=xlv0-xlv1*tmix cpm=cp*(1.+0.887*qmix) dssdt=qs*(cliq-bliq*dliq)/((tmix-dliq)*(tmix-dliq)) dq=(qmix-qs)/(1.+rl*dssdt/cpm) tmix=tmix+rl/cp*dq qmix=qmix-dq rocpq=0.2854*(1.-0.28*qmix) thmix=tmix*(p00/pmix)**rocpq tlcl=tmix plcl=pmix ELSE qmix=AMAX1(qmix,0.) emix=qmix*pmix/(0.622+qmix) tlog=ALOG(emix/aliq) tdpt=(cliq-dliq*tlog)/(bliq-tlog) tlcl=tdpt-(.212+1.571E-3*(tdpt-t00)-4.36E-4*(tmix-t00))*(tmix- & tdpt) tlcl=AMIN1(tlcl,tmix) cporq=1./rocpq plcl=p00*(tlcl/thmix)**cporq END IF tvlcl=tlcl*(1.+0.608*qmix) DO nk=lc,kl klcl=nk IF(plcl >= p0(nk))EXIT END DO k=klcl-1 dlp=ALOG(plcl/p0(k))/ALOG(p0(klcl)/p0(k)) ! !...ESTIMATE ENVIRONMENTAL TEMPERATURE AND MIXING RATIO AT THE LCL... ! tenv=tg(k)+(tg(klcl)-tg(k))*dlp qenv=qg(k)+(qg(klcl)-qg(k))*dlp tven=tenv*(1.+0.608*qenv) tvbar=0.5*(tvg(k)+tven) ! ZLCL=Z0(K)+R*TVBAR*ALOG(P0(K)/PLCL)/G zlcl=z0(k)+(z0(klcl)-z0(k))*dlp tvavg=0.5*(tven+tg(klcl)*(1.+0.608*qg(klcl))) plcl=p0(klcl)*EXP(g/(r*tvavg)*(z0(klcl)-zlcl)) theteu(k)=tmix*(1.e5/pmix)**(0.2854*(1.-0.28*qmix))* & EXP((3374.6525/tlcl-2.5403)*qmix*(1.+0.81*qmix)) es=aliq*EXP((tenv*bliq-cliq)/(tenv-dliq)) qese=0.622*es/(plcl-es) thtesg(k)=tenv*(1.e5/plcl)**(0.2854*(1.-0.28*qese))* & EXP((3374.6525/tenv-2.5403)*qese*(1.+0.81*qese)) ! !...COMPUTE ADJUSTED ABE(ABEG). ! abeg=0. thtudl=theteu(k) DO nk=k,ltopm1 nk1=nk+1 es=aliq*EXP((tg(nk1)*bliq-cliq)/(tg(nk1)-dliq)) qese=0.622*es/(p0(nk1)-es) thtesg(nk1)=tg(nk1)*(1.e5/p0(nk1))**(0.2854*(1.-0.28*qese))* & EXP((3374.6525/tg(nk1)-2.5403)*qese*(1.+0.81*qese) & ) ! DZZ=CVMGT(Z0(KLCL)-ZLCL,DZA(NK),NK.EQ.K) IF(nk == k)THEN dzz=z0(klcl)-zlcl ELSE dzz=dza(nk) END IF be=((2.*thtudl)/(thtesg(nk1)+thtesg(nk))-1.)*dzz IF(be > 0.)abeg=abeg+be*g END DO ! !...ASSUME AT LEAST 90% OF CAPE (ABE) IS REMOVED BY CONVECTION DURING !...THE PERIOD TIMEC... ! IF(noitr == 1)THEN ! WRITE(98,1060)FABE GO TO 265 END IF dabe=AMAX1(abe-abeg,0.1*abe) fabe=abeg/(abe+1.e-8) IF(fabe > 1.)THEN ! WRITE(98,*)'UPDRAFT/DOWNDRAFT COUPLET INCREASES CAPE AT THIS ! *GRID POINT; NO CONVECTION ALLOWED!' CYCLE END IF IF(ncount /= 1)THEN dfda=(fabe-fabeold)/(ainc-aincold) IF(dfda > 0.)THEN noitr=1 ainc=aincold GO TO 255 END IF END IF aincold=ainc fabeold=fabe IF(ainc/aincmx > 0.999.AND.fabe > 1.05-stab)THEN ! WRITE(98,1055)FABE GO TO 265 END IF IF(fabe <= 1.05-stab.AND.fabe >= 0.95-stab)GO TO 265 IF(ncount > 10)THEN ! WRITE(98,1060)FABE GO TO 265 END IF ! !...IF MORE THAN 10% OF THE ORIGINAL CAPE REMAINS, INCREASE THE CONVECTI !...MASS FLUX BY THE FACTOR AINC: ! IF(fabe == 0.)THEN ainc=ainc*0.5 ELSE ainc=ainc*stab*abe/(dabe+1.e-8) END IF 255 ainc=AMIN1(aincmx,ainc) !...IF AINC BECOMES VERY SMALL, EFFECTS OF CONVECTION ! JSK MODS !...WILL BE MINIMAL SO JUST IGNORE IT... ! JSK MODS IF(ainc < 0.05)CYCLE ! AINC=AMAX1(AINC,0.05) ! JSK MODS tder=tder2*ainc pptflx=pptfl2*ainc ! WRITE(98,1080)LFS,LDB,LDT,TIMEC,NSTEP,NCOUNT,FABEOLD,AINCOLD DO nk=1,ltop umf(nk)=umf2(nk)*ainc dmf(nk)=dmf2(nk)*ainc detlq(nk)=detlq2(nk)*ainc detic(nk)=detic2(nk)*ainc udr(nk)=udr2(nk)*ainc uer(nk)=uer2(nk)*ainc der(nk)=der2(nk)*ainc ddr(nk)=ddr2(nk)*ainc END DO ! !...GO BACK UP FOR ANOTHER ITERATION... ! GO TO 175 265 CONTINUE ! !...CLEAN THINGS UP, CALCULATE CONVECTIVE FEEDBACK TENDENCIES FOR THIS !...GRID POINT... ! !...COMPUTE HYDROMETEOR TENDENCIES AS IS DONE FOR T, QV... ! !...FRC2 IS THE FRACTION OF TOTAL CONDENSATE ! PPT FB MODS !...GENERATED THAT GOES INTO PRECIPITIATION ! PPT FB MODS frc2=pptflx/(cpr*ainc) ! PPT FB MODS DO nk=1,ltop qlpa(nk)=ql0(nk) qipa(nk)=qi0(nk) qrpa(nk)=qr0(nk) qspa(nk)=qs0(nk) rainfb(nk)=pptliq(nk)*ainc*fbfrc*frc2 ! PPT FB MODS snowfb(nk)=pptice(nk)*ainc*fbfrc*frc2 ! PPT FB MODS END DO DO ntc=1,nstep ! !...ASSIGN HYDROMETEORS CONCENTRATIONS AT THE TOP AND BOTTOM OF EACH LAY !...BASED ON THE SIGN OF OMEGA... ! DO nk=1,ltop qlfxin(nk)=0. qlfxout(nk)=0. qifxin(nk)=0. qifxout(nk)=0. qrfxin(nk)=0. qrfxout(nk)=0. qsfxin(nk)=0. qsfxout(nk)=0. END DO DO nk=2,ltop IF(omg(nk) <= 0.)THEN qlfxin(nk)=-fxm(nk)*qlpa(nk-1) qifxin(nk)=-fxm(nk)*qipa(nk-1) qrfxin(nk)=-fxm(nk)*qrpa(nk-1) qsfxin(nk)=-fxm(nk)*qspa(nk-1) qlfxout(nk-1)=qlfxout(nk-1)+qlfxin(nk) qifxout(nk-1)=qifxout(nk-1)+qifxin(nk) qrfxout(nk-1)=qrfxout(nk-1)+qrfxin(nk) qsfxout(nk-1)=qsfxout(nk-1)+qsfxin(nk) ELSE qlfxout(nk)=fxm(nk)*qlpa(nk) qifxout(nk)=fxm(nk)*qipa(nk) qrfxout(nk)=fxm(nk)*qrpa(nk) qsfxout(nk)=fxm(nk)*qspa(nk) qlfxin(nk-1)=qlfxin(nk-1)+qlfxout(nk) qifxin(nk-1)=qifxin(nk-1)+qifxout(nk) qrfxin(nk-1)=qrfxin(nk-1)+qrfxout(nk) qsfxin(nk-1)=qsfxin(nk-1)+qsfxout(nk) END IF END DO ! !...UPDATE THE HYDROMETEOR CONCENTRATION VALUES AT EACH LEVEL... ! DO nk=1,ltop qlpa(nk)=qlpa(nk)+(qlfxin(nk)+detlq(nk)-qlfxout(nk))*dtime* & emsd(nk) qipa(nk)=qipa(nk)+(qifxin(nk)+detic(nk)-qifxout(nk))*dtime* & emsd(nk) qrpa(nk)=qrpa(nk)+(qrfxin(nk)+qlqout(nk)*udr(nk)-qrfxout(nk) & +rainfb(nk))*dtime*emsd(nk) ! PPT FB MODS ! + )*DTIME*EMSD(NK) ! PPT FB MODS qspa(nk)=qspa(nk)+(qsfxin(nk)+qicout(nk)*udr(nk)-qsfxout(nk) & +snowfb(nk))*dtime*emsd(nk) ! PPT FB MODS ! + )*DTIME*EMSD(NK) ! PPT FB MODS END DO END DO DO nk=1,ltop qlg(nk)=qlpa(nk) qig(nk)=qipa(nk) qrg(nk)=qrpa(nk) qsg(nk)=qspa(nk) END DO ! WRITE(98,1080)LFS,LDB,LDT,TIMEC,NSTEP,NCOUNT,FABE,AINC ! !...SEND FINAL PARAMETERIZED VALUES TO OUTPUT FILES... ! IF(xtime < 10..OR.istop == 1)THEN ! WRITE(98,1070)' P ',' DP ',' DT K/D ',' DR K/D ',' OMG ', ! *' DOMGDP ',' UMF ',' UER ',' UDR ',' DMF ',' DER ' ! *,' DDR ',' EMS ',' W0 ',' DETLQ ',' DETIC ' ! DO 300 NK=1,LTOP ! K=LTOP-NK+1 ! DTT=(TG(K)-T0(K))*86400./TIMEC ! RL=XLV0-XLV1*TG(K) ! DR=-(QG(K)-Q0(K))*RL*86400./(TIMEC*CP) ! UDFRC=UDR(K)*TIMEC*EMSD(K) ! UEFRC=UER(K)*TIMEC*EMSD(K) ! DDFRC=DDR(K)*TIMEC*EMSD(K) ! DEFRC=-DER(K)*TIMEC*EMSD(K) ! WRITE(98,1075)P0(K)/100.,DP(K)/100.,DTT,DR,OMG(K),DOMGDP(K)*1.E4, ! * UMF(K)/1.E6,UEFRC,UDFRC,DMF(K)/1.E6,DEFRC,DDFRC,EMS(K)/1.E11, ! * W0AVG(I,J,K)*1.E2,DETLQ(K)*TIMEC*EMSD(K)*1.E3,DETIC(K)* ! * TIMEC*EMSD(K)*1.E3 ! 300 CONTINUE ! WRITE(98,1085)'K','P','Z','T0','TG','DT','TU','TD','Q0','QG', ! * 'DQ','QU','QD','QLG','QIG','QRG','QSG','RH0','RHG' ! DO 305 NK=1,KX ! K=KX-NK+1 ! DTT=TG(K)-T0(K) ! TUC=TU(K)-T00 ! IF(K.LT.LC.OR.K.GT.LTOP)TUC=0. ! TDC=TZ(K)-T00 ! IF((K.LT.LDB.OR.K.GT.LDT).AND.K.NE.LFS)TDC=0. ! ES=ALIQ*EXP((BLIQ*TG(K)-CLIQ)/(TG(K)-DLIQ)) ! QGS=ES*0.622/(P0(K)-ES) ! RH0=Q0(K)/QES(K) ! RHG=QG(K)/QGS ! WRITE(98,1090)K,P0(K)/100.,Z0(K),T0(K)-T00,TG(K)-T00,DTT,TUC, ! *TDC,Q0(K)*1000.,QG(K)*1000.,(QG(K)-Q0(K))*1000.,QU(K)* ! *1000.,QD(K)*1000.,QLG(K)*1000.,QIG(K)*1000.,QRG(K)*1000., ! *QSG(K)*1000.,RH0,RHG ! 305 CONTINUE ! !...IF CALCULATIONS ABOVE SHOW AN ERROR IN THE MASS BUDGET, PRINT OUT A !...TO BE USED LATER FOR DIAGNOSTIC PURPOSES, THEN ABORT RUN... ! IF(istop == 1)THEN DO k = 1,kx WRITE(98,1115)z0(k),p0(k)/100.,t0(k)-273.16,q0(k)*1000., & u0(k),v0(k),dp(k)/100.,w0avg(i,j,k) END DO CALL arpsstop('KAIN-FRITSCH',1) END IF END IF cndtnf=(1.-eqfrc(lfs))*(qliq(lfs)+qice(lfs))*dmf(lfs) ! WRITE(98,1095)CPR*AINC,TDER+PPTFLX+CNDTNF ! ! EVALUATE MOISTURE BUDGET... ! qinit=0. qfnl=0. dpt=0. DO nk=1,ltop dpt=dpt+dp(nk) qinit=qinit+q0(nk)*ems(nk) qfnl=qfnl+qg(nk)*ems(nk) qfnl=qfnl+(qlg(nk)+qig(nk)+qrg(nk)+qsg(nk))*ems(nk) END DO qfnl=qfnl+pptflx*timec*(1.-fbfrc) ! PPT FB MODS ! QFNL=QFNL+PPTFLX*TIMEC ! PPT FB MODS err2=(qfnl-qinit)*100./qinit ! WRITE(98,1110)QINIT,QFNL,ERR2 !wang IF(ABS(ERR2).GT.0.05)CALL arpsstop('QVERR',1) relerr=err2*qinit/(pptflx*timec+1.e-10) ! WRITE(98,1120)RELERR ! WRITE(98,*)'TDER, CPR, USR, TRPPT =', ! *TDER,CPR*AINC,USR*AINC,TRPPT*AINC ! !...FEEDBACK TO RESOLVABLE SCALE TENDENCIES. ! !...IF THE ADVECTIVE TIME PERIOD (TADVEC) IS LESS THAN SPECIFIED MINIMUM !...TIMEC, ALLOW FEEDBACK TO OCCUR ONLY DURING TADVEC... ! IF(tadvec < timec)nic=nint(tadvec/(0.5*dt2)) nca(i,j)=nic DO k=1,kx nk=kx-k+1 ! IF(IMOIST(INEST).NE.2)THEN IF(mphyopt == 0.0 ) THEN !no microphy ! !...IF HYDROMETEORS ARE NOT ALLOWED, THEY MUST BE EVAPORATED OR SUBLIMAT !...AND FED BACK AS VAPOR, ALONG WITH ASSOCIATED CHANGES IN TEMPERATURE. !...NOTE: THIS WILL INTRODUCE CHANGES IN THE CONVECTIVE TEMPERATURE AND !...WATER VAPOR FEEDBACK TENDENCIES AND MAY LEAD TO SUPERSATURATED VALUE !...OF QG... ! rlc=xlv0-xlv1*tg(k) rls=xls0-xls1*tg(k) cpm=cp*(1.+0.887*qg(k)) tg(k)=tg(k)-(rlc*(qlg(k)+qrg(k))+rls*(qig(k)+qsg(k)))/cpm qg(k)=qg(k)+(qlg(k)+qrg(k)+qig(k)+qsg(k)) dqldt(i,j,nk)=0. dqidt(i,j,nk)=0. dqrdt(i,j,nk)=0. dqsdt(i,j,nk)=0. ELSE ! IF(IEXICE.NE.1 .AND. IICE.NE.1) THEN ! IF(IMPHYS(INEST).EQ.3)THEN IF(mphyopt == 1) THEN !warmrain microphy ! !...IF ICE PHASE IS NOT ALLOWED, MELT ALL FROZEN HYDROMETEORS... ! cpm=cp*(1.+0.887*qg(k)) tg(k)=tg(k)-(qig(k)+qsg(k))*rlf/cpm dqldt(i,j,nk)=(qlg(k)+qig(k)-ql0(k)-qi0(k))/timec dqidt(i,j,nk)=0. dqrdt(i,j,nk)=(qrg(k)+qsg(k)-qr0(k)-qs0(k))/timec dqsdt(i,j,nk)=0. ! ELSEIF(IEXICE.EQ.1 .AND. IICE.EQ.0)THEN ! ELSEIF(IMPHYS(INEST).EQ.4)THEN ! !...IF ICE PHASE IS ALLOWED, BUT MIXED PHASE IS NOT, MELT FROZEN HYDROME !...BELOW THE MELTING LEVEL, FREEZE LIQUID WATER ABOVE THE MELTING LEVEL ! ! CPM=CP*(1.+0.887*QG(K)) ! IF(K.LE.ML)THEN ! TG(K)=TG(K)-(QIG(K)+QSG(K))*RLF/CPM ! ELSEIF(K.GT.ML)THEN ! TG(K)=TG(K)+(QLG(K)+QRG(K))*RLF/CPM ! ENDIF ! DQLDT(I,J,NK)=(QLG(K)+QIG(K)-QL0(K)-QI0(K))/TIMEC ! DQIDT(I,J,NK)=0. ! DQRDT(I,J,NK)=(QRG(K)+QSG(K)-QR0(K)-QS0(K))/TIMEC ! DQSDT(I,J,NK)=0. ! ELSEIF(IICE.EQ.1 .AND. IEXICE.EQ.0)THEN ! ELSEIF(IMPHYS(INEST).GE.5)THEN ELSE IF(mphyopt == 2 .OR. mphyopt == 3) THEN !ice ! !...IF MIXED PHASE HYDROMETEORS ARE ALLOWED, FEED BACK CONVECTIVE TENDEN !...OF HYDROMETEORS DIRECTLY... ! dqldt(i,j,nk)=(qlg(k)-ql0(k))/timec dqidt(i,j,nk)=(qig(k)-qi0(k))/timec dqrdt(i,j,nk)=(qrg(k)-qr0(k))/timec dqsdt(i,j,nk)=(qsg(k)-qs0(k))/timec ! ELSE ! PRINT *,'THIS COMBINATION OF IMOIST, IEXICE, IICE NOT ALLOWED!' ! CALL arpsstop('KAIN-FRITSCH',1) END IF END IF dtdt(i,j,nk)=(tg(k)-t0(k))/timec dqdt(i,j,nk)=(qg(k)-q0(k))/timec END DO raincv(i,j)=.1*.5*dt2*pptflx*(1.-fbfrc)/dxsq ! PPT FB MODS ! RAINCV(I,J)=.1*.5*DT2*PPTFLX/DXSQ ! PPT FB MODS ! RNC=0.1*TIMEC*PPTFLX/DXSQ rnc=raincv(i,j)*nic ! WRITE(98,909)RNC ! 909 FORMAT(' CONVECTIVE RAINFALL =',f8.4,' CM') END DO ! 1000 FORMAT(' ',10A8) ! 1005 FORMAT(' ',f6.0,2X,f6.4,2X,f7.3,1X,f6.4,2X,4(f6.3,2X),2(f7.3,1X)) ! 1010 FORMAT(' ',' VERTICAL VELOCITY IS NEGATIVE AT ',f4.0,' MB') ! 1015 FORMAT(' ','ALL REMAINING MASS DETRAINS BELOW ',f4.0,' MB') ! 1025 FORMAT(5X,' KLCL=',i2,' ZLCL=',f7.1,'M', & ! ' DTLCL=',f5.2,' LTOP=',i2,' P0(LTOP)=',-2PF5.1,'MB FRZ LV=', & ! i2,' TMIX=',0PF4.1,1X,'PMIX=',-2PF6.1,' QMIX=',3PF5.1, & ! ' CAPE=',0PF7.1) ! 1030 FORMAT(' ',' P0(LET) = ',f6.1,' P0(LTOP) = ',f6.1,' VMFLCL =', & ! e12.3,' PLCL =',f6.1,' WLCL =',f6.3,' CLDHGT =', & ! f8.1) ! 1035 FORMAT(1X,'PEF(WS)=',f4.2,'(CB)=',f4.2,'LC,LET=',2I3,'WKL=' & ! ,f6.3,'VWS=',f5.2) ! 1040 FORMAT(' ','PRECIP EFF = 100%, ENVIR CANNOT SUPPORT DOWND afts!') ! 1045 FORMAT('NUMBER OF DOWNDRAFT ITERATIONS EXCEEDS 10...PPTFLX & ! & is different from that given by precip eff relation!') ! 1050 FORMAT(' ','LCOUNT= ',i3,' PPTFLX/CPR, PEFF= ',f5.3,1X,f5.3, & ! & 'DMF(LFS)/UMF(LCL)= ',f5.3) ! 1055 FORMAT(/'*** DEGREE OF STABILIZATION =',f5.3,', NO MORE MASS F & ! & ux is allowed!') ! 1060 FORMAT(/' ITERATION DOES NOT CONVERGE TO GIVE THE SPECIFIED & ! & degree of stabilization! FABE= ',F6.4) ! 1070 FORMAT (16A8) ! 1075 FORMAT (f8.2,3(f8.2),2(f8.3),f8.2,2F8.3,f8.2,6F8.3) ! 1080 FORMAT(2X,'LFS,LDB,LDT =',3I3,' TIMEC, NSTEP=',f5.0,i3, & ! & 'NCOUNT, FABE, AINC=',i2,1X,f5.3,f6.2) ! 1085 FORMAT (a3,16A7,2A8) ! 1090 FORMAT (i3,f7.2,f7.0,10F7.2,4F7.3,2F8.3) ! 1095 FORMAT(' ',' PPT PRODUCTION RATE= ',f10.0,' TOTAL EVAP+PPT= ', & ! & f10.0) ! 1105 FORMAT(' ','NET LATENT HEAT RELEASE =',e12.5,' ACTUAL HEATING =', & ! & e12.5,' J/KG-S, DIFFERENCE = ',f9.3,'%') ! 1110 FORMAT(' ','INITIAL WATER =',e12.5,' FINAL WATER =',e12.5, & ! & ' TOTAL WATER CHANGE =',f8.2,'%') 1115 FORMAT(2X,f6.0,2X,f7.2,2X,f5.1,2X,f6.3,2(2X,f5.1),2X,f7.2,2X,f7.4 ) ! 1120 FORMAT(' ','MOISTURE ERROR AS FUNCTION OF TOTAL PPT =',f9.3,'%') RETURN END SUBROUTINE kfpara !********************************************************************** ! BLOCK DATA ! COMMON/VAPPRS/ALIQ,BLIQ,CLIQ,DLIQ,AICE,BICE,CICE,DICE,XLS0,XLS1 ! DATA ALIQ,BLIQ,CLIQ,DLIQ/613.3,17.502,4780.8,32.19/ ! DATA AICE,BICE,CICE,DICE/613.2,22.452,6133.0,0.61/ ! DATA XLS0,XLS1/2.905E6,259.532/ ! END !********************************************************************* SUBROUTINE tpmix(p,thtu,tu,qu,qliq,qice,qnewlq,qnewic,ratio2,rl, & 3 xlv0,xlv1,xls0,xls1, & aliq,bliq,cliq,dliq,aice,bice,cice,dice) ! !...THIS SUBROUTINE ITERATIVELY EXTRACTS WET-BULB TEMPERATURE FROM EQUIV ! POTENTIAL TEMPERATURE, THEN CHECKS TO SEE IF SUFFICIENT MOISTURE IS ! AVAILABLE TO ACHIEVE SATURATION...IF NOT, TEMPERATURE IS ADJUSTED ! ACCORDINGLY, IF SO, THE RESIDUAL LIQUID WATER/ICE CONCENTRATION IS ! DETERMINED... ! c5=1.0723E-3 rv=461.51 ! ! ITERATE TO FIND WET BULB TEMPERATURE AS A FUNCTION OF EQUIVALENT POT ! TEMP AND PRS, ASSUMING SATURATION VAPOR PRESSURE...RATIO2 IS THE DEG ! OF GLACIATION... ! IF(ratio2 < 1.e-6)THEN es=aliq*EXP((bliq*tu-cliq)/(tu-dliq)) qs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*qs)) thtgs=tu*pi*EXP((3374.6525/tu-2.5403)*qs*(1.+0.81*qs)) ELSE IF(ABS(ratio2-1.) < 1.e-6)THEN es=aice*EXP((bice*tu-cice)/(tu-dice)) qs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*qs)) thtgs=tu*pi*EXP((3114.834/tu-0.278296)*qs*(1.+0.81*qs)) ELSE esliq=aliq*EXP((bliq*tu-cliq)/(tu-dliq)) esice=aice*EXP((bice*tu-cice)/(tu-dice)) es=(1.-ratio2)*esliq+ratio2*esice qs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*qs)) thtgs=tu*pi*EXP(rl*qs*c5/tu*(1.+0.81*qs)) END IF f0=thtgs-thtu t1=tu-0.5*f0 t0=tu itcnt=0 90 IF(ratio2 < 1.e-6)THEN es=aliq*EXP((bliq*t1-cliq)/(t1-dliq)) qs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*qs)) thtgs=t1*pi*EXP((3374.6525/t1-2.5403)*qs*(1.+0.81*qs)) ELSE IF(ABS(ratio2-1.) < 1.e-6)THEN es=aice*EXP((bice*t1-cice)/(t1-dice)) qs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*qs)) thtgs=t1*pi*EXP((3114.834/t1-0.278296)*qs*(1.+0.81*qs)) ELSE esliq=aliq*EXP((bliq*t1-cliq)/(t1-dliq)) esice=aice*EXP((bice*t1-cice)/(t1-dice)) es=(1.-ratio2)*esliq+ratio2*esice qs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*qs)) thtgs=t1*pi*EXP(rl*qs*c5/t1*(1.+0.81*qs)) END IF f1=thtgs-thtu IF(ABS(f1) < 0.01)GO TO 50 itcnt=itcnt+1 IF(itcnt > 10)GO TO 50 dt=f1*(t1-t0)/(f1-f0) t0=t1 f0=f1 t1=t1-dt GO TO 90 ! ! IF THE PARCEL IS SUPERSATURATED, CALCULATE CONCENTRATION OF FRESH ! CONDENSATE... ! 50 IF(qs <= qu)THEN qnew=qu-qs qu=qs GO TO 96 END IF ! ! IF THE PARCEL IS SUBSATURATED, TEMPERATURE AND MIXING RATIO MUST BE ! ADJUSTED...IF LIQUID WATER OR ICE IS PRESENT, IT IS ALLOWED TO EVAPO ! SUBLIMATE. ! qnew=0. dq=qs-qu qtot=qliq+qice ! ! IF THERE IS ENOUGH LIQUID OR ICE TO SATURATE THE PARCEL, TEMP STAYS ! WET BULB VALUE, VAPOR MIXING RATIO IS AT SATURATED LEVEL, AND THE MI ! RATIOS OF LIQUID AND ICE ARE ADJUSTED TO MAKE UP THE ORIGINAL SATURA ! DEFICIT... OTHERWISE, ANY AVAILABLE LIQ OR ICE VAPORIZES AND APPROPR ! ADJUSTMENTS TO PARCEL TEMP; VAPOR, LIQUID, AND ICE MIXING RATIOS ARE ! !...NOTE THAT THE LIQ AND ICE MAY BE PRESENT IN PROPORTIONS SLIGHTLY DIF ! THAN SUGGESTED BY THE VALUE OF RATIO2...CHECK TO MAKE SURE THAT LIQ ! ICE CONCENTRATIONS ARE NOT REDUCED TO BELOW ZERO WHEN EVAPORATION/ ! SUBLIMATION OCCURS... ! IF(qtot >= dq)THEN dqice=0.0 dqliq=0.0 qliq=qliq-(1.-ratio2)*dq IF(qliq < 0.)THEN dqice=0.0-qliq qliq=0.0 END IF qice=qice-ratio2*dq+dqice IF(qice < 0.)THEN dqliq=0.0-qice qice=0.0 END IF qliq=qliq+dqliq qu=qs GO TO 96 ELSE IF(ratio2 < 1.e-6)THEN rll=xlv0-xlv1*t1 ELSE IF(ABS(ratio2-1.) < 1.e-6)THEN rll=xls0-xls1*t1 ELSE rll=rl END IF cp=1005.7*(1.+0.89*qu) IF(qtot < 1.e-10)THEN ! !...IF NO LIQUID WATER OR ICE IS AVAILABLE, TEMPERATURE IS GIVEN BY: t1=t1+rll*(dq/(1.+dq))/cp GO TO 96 ELSE ! !...IF SOME LIQ WATER/ICE IS AVAILABLE, BUT NOT ENOUGH TO ACHIEVE SATURA ! THE TEMPERATURE IS GIVEN BY: t1=t1+rll*((dq-qtot)/(1+dq-qtot))/cp qu=qu+qtot qtot=0. END IF qliq=0 qice=0. END IF 96 tu=t1 qnewlq=(1.-ratio2)*qnew qnewic=ratio2*qnew IF(itcnt > 10)PRINT*,'***** NUMBER OF ITERATIONS IN TPMIX =', itcnt RETURN END SUBROUTINE tpmix !************************* TPDD.FOR ************************************ ! THIS SUBROUTINE ITERATIVELY EXTRACTS TEMPERATURE FROM EQUIVALENT * ! POTENTIAL TEMP. IT IS DESIGNED FOR USE WITH DOWNDRAFT CALCULATIONS. ! IF RELATIVE HUMIDITY IS SPECIFIED TO BE LESS THAN 100%, PARCEL * ! TEMP, SPECIFIC HUMIDITY, AND LIQUID WATER CONTENT ARE ITERATIVELY * ! CALCULATED. * !*********************************************************************** FUNCTION tpdd(p,thted,tgs,rs,rd,rh,xlv0,xlv1, & aliq,bliq,cliq,dliq,aice,bice,cice,dice) es=aliq*EXP((bliq*tgs-cliq)/(tgs-dliq)) rs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*rs)) thtgs=tgs*pi*EXP((3374.6525/tgs-2.5403)*rs*(1.+0.81*rs)) f0=thtgs-thted t1=tgs-0.5*f0 t0=tgs cp=1005.7 ! !...ITERATE TO FIND WET-BULB TEMPERATURE... ! itcnt=0 90 es=aliq*EXP((bliq*t1-cliq)/(t1-dliq)) rs=0.622*es/(p-es) pi=(1.e5/p)**(0.2854*(1.-0.28*rs)) thtgs=t1*pi*EXP((3374.6525/t1-2.5403)*rs*(1.+0.81*rs)) f1=thtgs-thted IF(ABS(f1) < 0.05)GO TO 50 itcnt=itcnt+1 IF(itcnt > 10)GO TO 50 dt=f1*(t1-t0)/(f1-f0) t0=t1 f0=f1 t1=t1-dt GO TO 90 50 rl=xlv0-xlv1*t1 ! !...IF RELATIVE HUMIDITY IS SPECIFIED TO BE LESS THAN 100%, ESTIMATE THE ! TEMPERATURE AND MIXING RATIO WHICH WILL YIELD THE APPROPRIATE VALUE. ! IF(rh == 1.)GO TO 110 dssdt=(cliq-bliq*dliq)/((t1-dliq)*(t1-dliq)) dt=rl*rs*(1.-rh)/(cp+rl*rh*rs*dssdt) t1rh=t1+dt es=rh*aliq*EXP((bliq*t1rh-cliq)/(t1rh-dliq)) rsrh=0.622*es/(p-es) ! !...CHECK TO SEE IF MIXING RATIO AT SPECIFIED RH IS LESS THAN ACTUAL !...MIXING RATIO...IF SO, ADJUST TO GIVE ZERO EVAPORATION... ! IF(rsrh < rd)THEN rsrh=rd t1rh=t1+(rs-rsrh)*rl/cp END IF t1=t1rh rs=rsrh 110 tpdd=t1 IF(itcnt > 10)PRINT*,'***** NUMBER OF ITERATIONS IN TPDD = ', itcnt RETURN END FUNCTION tpdd !*********************************************************************** SUBROUTINE dtfrznew(tu,p,thteu,qvap,qliq,qice,ratio2,ttfrz,tbfrz, & 2 qnwfrz,rl,frc1,effq,iflag,xlv0,xlv1,xls0,xls1, & aliq,bliq,cliq,dliq,aice,bice,cice,dice) ! !...ALLOW GLACIATION OF THE UPDRAFT TO OCCUR AS AN APPROXIMATELY LINEAR ! FUNCTION OF TEMPERATURE IN THE TEMPERATURE RANGE TTFRZ TO TBFRZ... ! rv=461.51 c5=1.0723E-3 ! !...ADJUST THE LIQUID WATER CONCENTRATIONS FROM FRESH CONDENSATE AND THA ! BROUGHT UP FROM LOWER LEVELS TO AN AMOUNT THAT WOULD BE PRESENT IF N ! LIQUID WATER HAD FROZEN THUS FAR...THIS IS NECESSARY BECAUSE THE ! EXPRESSION FOR TEMP CHANGE IS MULTIPLIED BY THE FRACTION EQUAL TO TH ! PARCEL TEMP DECREASE SINCE THE LAST MODEL LEVEL DIVIDED BY THE TOTAL ! GLACIATION INTERVAL, SO THAT EFFECTIVELY THIS APPROXIMATELY ALLOWS A ! AMOUNT OF LIQUID WATER TO FREEZE WHICH IS EQUAL TO THIS SAME FRACTIO ! OF THE LIQUID WATER THAT WAS PRESENT BEFORE THE GLACIATION PROCESS W ! INITIATED...ALSO, TO ALLOW THETAU TO CONVERT APPROXIMATELY LINEARLY ! ITS VALUE WITH RESPECT TO ICE, WE NEED TO ALLOW A PORTION OF THE FRE ! CONDENSATE TO CONTRIBUTE TO THE GLACIATION PROCESS; THE FRACTIONAL ! AMOUNT THAT APPLIES TO THIS PORTION IS 1/2 OF THE FRACTIONAL AMOUNT ! FROZEN OF THE "OLD" CONDENSATE BECAUSE THIS FRESH CONDENSATE IS ONLY ! PRODUCED GRADUALLY OVER THE LAYER...NOTE THAT IN TERMS OF THE DYNAMI ! OF THE PRECIPITATION PROCESS, IE. PRECIPITATION FALLOUT, THIS FRACTI ! AMNT OF FRESH CONDENSATE HAS ALREADY BEEN INCLUDED IN THE ICE CATEGO ! qlqfrz=qliq*effq qnew=qnwfrz*effq*0.5 esliq=aliq*EXP((bliq*tu-cliq)/(tu-dliq)) esice=aice*EXP((bice*tu-cice)/(tu-dice)) rlc=2.5E6-2369.276*(tu-273.16) rls=2833922.-259.532*(tu-273.16) rlf=rls-rlc cp=1005.7*(1.+0.89*qvap) ! ! A = D(ES)/DT IS THAT CALCULATED FROM BUCK'S (1981) EMPERICAL FORMULAS ! FOR SATURATION VAPOR PRESSURE... ! a=(cice-bice*dice)/((tu-dice)*(tu-dice)) b=rls*0.622/p c=a*b*esice/cp dqvap=b*(esliq-esice)/(rls+rls*c)-rlf*(qlqfrz+qnew)/(rls+rls/c) dtfrz=(rlf*(qlqfrz+qnew)+b*(esliq-esice))/(cp+a*b*esice) tu1=tu qvap1=qvap tu=tu+frc1*dtfrz qvap=qvap-frc1*dqvap es=qvap*p/(0.622+qvap) esliq=aliq*EXP((bliq*tu-cliq)/(tu-dliq)) esice=aice*EXP((bice*tu-cice)/(tu-dice)) ratio2=(esliq-es)/(esliq-esice) ! ! TYPICALLY, RATIO2 IS VERY CLOSE TO (TTFRZ-TU)/(TTFRZ-TBFRZ), USUALLY ! WITHIN 1% (USING TU BEFORE GALCIATION EFFECTS ARE APPLIED); IF THE ! INITIAL UPDRAFT TEMP IS BELOW TBFRZ AND RATIO2 IS STILL LESS THAN 1, ! AN ADJUSTMENT TO FRC1 AND RATIO2 IS INTRODUCED SO THAT GLACIATION ! EFFECTS ARE NOT UNDERESTIMATED; CONVERSELY, IF RATIO2 IS GREATER THAN ! FRC1 IS ADJUSTED SO THAT GLACIATION EFFECTS ARE NOT OVERESTIMATED... ! IF(iflag > 0.AND.ratio2 < 1)THEN frc1=frc1+(1.-ratio2) tu=tu1+frc1*dtfrz qvap=qvap1-frc1*dqvap ratio2=1. iflag=1 GO TO 20 END IF IF(ratio2 > 1.)THEN frc1=frc1-(ratio2-1.) frc1=AMAX1(0.0,frc1) tu=tu1+frc1*dtfrz qvap=qvap1-frc1*dqvap ratio2=1. iflag=1 END IF ! ! CALCULATE A HYBRID VALUE OF THETAU, ASSUMING THAT THE LATENT HEAT OF ! VAPORIZATION/SUBLIMATION CAN BE ESTIMATED USING THE SAME WEIGHTING ! FUNCTION AS THAT USED TO CALCULATE SATURATION VAPOR PRESSURE, CALCU- ! LATE NEW LIQUID WATER AND ICE CONCENTRATIONS... ! 20 rlc=xlv0-xlv1*tu rls=xls0-xls1*tu rl=ratio2*rls+(1.-ratio2)*rlc pi=(1.e5/p)**(0.2854*(1.-0.28*qvap)) thteu=tu*pi*EXP(rl*qvap*c5/tu*(1.+0.81*qvap)) IF(iflag == 1)THEN qice=qice+frc1*dqvap+qliq qliq=0. ELSE qice=qice+frc1*(dqvap+qlqfrz) qliq=qliq-frc1*qlqfrz END IF qnwfrz=0. RETURN END SUBROUTINE dtfrznew !********************************************************************** SUBROUTINE envirtht(p1,t1,q1,tht1,r1,rl, & 6 aliq,bliq,cliq,dliq,aice,bice,cice,dice) DATA t00,p00,c1,c2,c3,c4,c5/273.16,1.e5,3374.6525,2.5403,3114.834, & 0.278296,1.0723E-3/ ! ! CALCULATE ENVIRONMENTAL EQUIVALENT POTENTIAL TEMPERATURE... ! IF(r1 < 1.e-6)THEN ee=q1*p1/(0.622+q1) tlog=ALOG(ee/aliq) tdpt=(cliq-dliq*tlog)/(bliq-tlog) tsat=tdpt-(.212+1.571E-3*(tdpt-t00)-4.36E-4*(t1-t00))*(t1-tdpt) tht=t1*(p00/p1)**(0.2854*(1.-0.28*q1)) tht1=tht*EXP((c1/tsat-c2)*q1*(1.+0.81*q1)) ELSE IF(ABS(r1-1.) < 1.e-6)THEN ee=q1*p1/(0.622+q1) tlog=ALOG(ee/aice) tfpt=(cice-dice*tlog)/(bice-tlog) tht=t1*(p00/p1)**(0.2854*(1.-0.28*q1)) tsat=tfpt-(.182+1.13E-3*(tfpt-t00)-3.58E-4*(t1-t00))*(t1-tfpt) tht1=tht*EXP((c3/tsat-c4)*q1*(1.+0.81*q1)) ELSE ee=q1*p1/(0.622+q1) tlog=ALOG(ee/aliq) tdpt=(cliq-dliq*tlog)/(bliq-tlog) tlogic=ALOG(ee/aice) tfpt=(cice-dice*tlogic)/(bice-tlogic) tht=t1*(p00/p1)**(0.2854*(1.-0.28*q1)) tsatlq=tdpt-(.212+1.571E-3*(tdpt-t00)-4.36E-4*(t1-t00))*(t1-tdpt & ) tsatic=tfpt-(.182+1.13E-3*(tfpt-t00)-3.58E-4*(t1-t00))*(t1-tfpt) tsat=r1*tsatic+(1.-r1)*tsatlq tht1=tht*EXP(rl*q1*c5/tsat*(1.+0.81*q1)) END IF RETURN END SUBROUTINE envirtht !********************************************************************* SUBROUTINE condload(qliq,qice,wtw,dz,boterm,enterm,rate,qnewlq, & 2 qnewic,qlqout,qicout) ! 9/18/88...THIS PRECIPITATION FALLOUT SCHEME IS BASED ON THE SCHEME US ! BY OGURA AND CHO (1973). LIQUID WATER FALLOUT FROM A PARCEL IS CAL- ! CULATED USING THE EQUATION DQ=-RATE*Q*DT, BUT TO SIMULATE A QUASI- ! CONTINUOUS PROCESS, AND TO ELIMINATE A DEPENDENCY ON VERTICAL ! RESOLUTION THIS IS EXPRESSED AS Q=Q*EXP(-RATE*DZ). DATA g/9.81/ qtot=qliq+qice qnew=qnewlq+qnewic ! ! ESTIMATE THE VERTICAL VELOCITY SO THAT AN AVERAGE VERTICAL VELOCITY C ! BE CALCULATED TO ESTIMATE THE TIME REQUIRED FOR ASCENT BETWEEN MODEL ! LEVELS... ! qest=0.5*(qtot+qnew) g1=wtw+boterm-enterm-2.*g*dz*qest/1.5 IF(g1 < 0.0)g1=0. wavg=(SQRT(wtw)+SQRT(g1))/2. conv=rate*dz/wavg ! ! RATIO3 IS THE FRACTION OF LIQUID WATER IN FRESH CONDENSATE, RATIO4 IS ! THE FRACTION OF LIQUID WATER IN THE TOTAL AMOUNT OF CONDENSATE INVOLV ! IN THE PRECIPITATION PROCESS - NOTE THAT ONLY 60% OF THE FRESH CONDEN ! SATE IS IS ALLOWED TO PARTICIPATE IN THE CONVERSION PROCESS... ! ratio3=qnewlq/(qnew+1.e-10) ! OLDQ=QTOT qtot=qtot+0.6*qnew oldq=qtot ratio4=(0.6*qnewlq+qliq)/(qtot+1.e-10) qtot=qtot*EXP(-conv) ! ! DETERMINE THE AMOUNT OF PRECIPITATION THAT FALLS OUT OF THE UPDRAFT ! PARCEL AT THIS LEVEL... ! dq=oldq-qtot qlqout=ratio4*dq qicout=(1.-ratio4)*dq ! ! ESTIMATE THE MEAN LOAD OF CONDENSATE ON THE UPDRAFT IN THE LAYER, CAL ! LATE VERTICAL VELOCITY ! pptdrg=0.5*(oldq+qtot-0.2*qnew) wtw=wtw+boterm-enterm-2.*g*dz*pptdrg/1.5 ! ! DETERMINE THE NEW LIQUID WATER AND ICE CONCENTRATIONS INCLUDING LOSSE ! DUE TO PRECIPITATION AND GAINS FROM CONDENSATION... ! qliq=ratio4*qtot+ratio3*0.4*qnew qice=(1.-ratio4)*qtot+(1.-ratio3)*0.4*qnew qnewlq=0. qnewic=0. RETURN END SUBROUTINE condload !*********************************************************************** !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ! THIS SUBROUTINE INTEGRATES THE AREA UNDER THE CURVE IN THE GAUSSIAN ! DISTRIBUTION...THE NUMERICAL APPROXIMATION TO THE INTEGRAL IS TAKEN F ! "HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, GRAPHS AND MATHEMA ! TABLES" ED. BY ABRAMOWITZ AND STEGUN, NAT'L BUREAU OF STANDARDS APPLI ! MATHEMATICS SERIES. JUNE, 1964., MAY, 1968. ! JACK KAIN ! 7/6/89 !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC !********************************************************************* !***** GAUSSIAN TYPE MIXING PROFILE....****************************** SUBROUTINE prof5(EQ,ee,ud) 2 DATA sqrt2p,a1,a2,a3,p,sigma,fe/2.506628,0.4361836,-0.1201676, & 0.9372980,0.33267,0.166666667,0.202765151/ x=(EQ-0.5)/sigma y=6.*EQ-3. ey=EXP(y*y/(-2)) e45=EXP(-4.5) t2=1./(1.+p*ABS(y)) t1=0.500498 c1=a1*t1+a2*t1*t1+a3*t1*t1*t1 c2=a1*t2+a2*t2*t2+a3*t2*t2*t2 IF(y >= 0.)THEN ee=sigma*(0.5*(sqrt2p-e45*c1-ey*c2)+sigma*(e45-ey))-e45*EQ*EQ/2. ud=sigma*(0.5*(ey*c2-e45*c1)+sigma*(e45-ey))-e45*(0.5+EQ*EQ/2.- & EQ) ELSE ee=sigma*(0.5*(ey*c2-e45*c1)+sigma*(e45-ey))-e45*EQ*EQ/2. ud=sigma*(0.5*(sqrt2p-e45*c1-ey*c2)+sigma*(e45-ey))-e45*(0.5+EQ* & EQ/2.-EQ) END IF ee=ee/fe ud=ud/fe RETURN END SUBROUTINE prof5