!
!##################################################################
!##################################################################
!###### ######
!###### Advanced Regional Prediction System (ARPS) ######
!###### Version 4.4 ######
!###### ######
!###### Developed by ######
!###### Center for Analysis and Prediction of Storms ######
!###### University of Oklahoma ######
!###### ######
!##################################################################
!##################################################################
!
PROGRAM ARPSASSIM ,11
!
!-----------------------------------------------------------------------
!
! CONTACT:
!
! For further information, contact:
!
! Center for Analysis and Prediction of Storms
! University of Oklahoma
! Sarkeys Energy Center,
! 100 East Boyd
! Norman, OK 73019 USA
! Phone: (405) 325-0453
! FAX : (405) 325-7614
! E-mail: kdroege@tornado.caps.ou.edu
! or: mxue@tornado.caps.ou.edu
!
! User support: arpsuser@ou.edu
!
!-----------------------------------------------------------------------
!
! PURPOSE:
!
! This program is the driver for the Advanced Regional Prediction
! System (ARPS) model.
!
! The ARPS is a fully three-dimensional, compressible,
! nonhydrostatic model based on the Arakawa C grid. The model
! solves three momentum equations, a thermodynamic energy
! equation, a pressure equation, six moisture equations (water
! vapor, cloud water, rainwater, cloud ice, hail, and snow),
! and also provides for the statistical representation of
! unresolvable processes via a turbulence parameterization scheme
! (user option). The model is written in a terrain-following
! coordinate system, and has provisions for several boundary
! condition options.
!
! For a full description of ARPS, please consult the ARPS 4.0
! User's Guide.
!
!-----------------------------------------------------------------------
!
! MODIFICATION HISTORY:
!
! The modification history can be found in file HISTORY.
!
!-----------------------------------------------------------------------
!
! GRID STRUCTURE AND STENCIL NUMBERING CONVENTION
!
! Each of the three velocity components is located at a physical
! boundary in the model. The numbering convention for the
! staggered grid is shown below for each of the coordinate
! directions, where S denotes a scalar variable.
!
! Arakawa C-grid is used by this model.
!
!
! X-Direction (East.......West):
!
! West boundary East boundary
! | |
! <-------- Physical Domain ------>
! +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
! U S U S U S U S U S U
!
! i= 1 1 2 2 . . . NX-2 NX-2 NX-1 NX-1 NX
!
!
! Y-Direction (North......South):
!
! South boundary North boundary
! | |
! <------- Physical Domain ------->
! +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
! V S V S V S V S V S V
!
! j= 1 1 2 2 . . . NY-2 NY-2 NY-1 NY-1 NY
!
!
! Z-Direction:
!
! NZ + W
! |
! |
! |
! NZ-1 + S
! |
! |
! |
! NZ-1 + W -- Physical Top boundary.
! |
! .
! .
! .
!
! |
! 2 + S
! |
! |
! |
! 2 + W -- Physical Ground Level
! |
! |
! |
! 1 + S
! |
! |
! |
! k= 1 + W
!
!-----------------------------------------------------------------------
!
! Variable Declarations:
!
!-----------------------------------------------------------------------
!
IMPLICIT NONE ! Force explicit declarations
!
INTEGER :: nt ! The no. of time levels of time-dependent
! arrays.
INTEGER :: nx, ny, nz ! Dimension in x, y and z directions
INTEGER :: tpast ! Index of time level for the past time.
INTEGER :: tpresent ! Index of time level for the present time.
INTEGER :: tfuture ! Index of time level for the future time.
INTEGER :: nstyps ! Number of soil type
! PARAMETER (nstyps=4)
PARAMETER (nt=3, tpast=1, tpresent=2, tfuture=3)
!
!-----------------------------------------------------------------------
!
! Permanent arrays defined in the model.
!
! These arrays must be saved (can not be overwritten) between
! time steps.
!
!-----------------------------------------------------------------------
!
!
!-----------------------------------------------------------------------
!
! Time dependent variables:
!
!-----------------------------------------------------------------------
!
REAL, ALLOCATABLE :: u (:,:,:,:) ! Total u-velocity (m/s)
REAL, ALLOCATABLE :: v (:,:,:,:) ! Total v-velocity (m/s)
REAL, ALLOCATABLE :: w (:,:,:,:) ! Total w-velocity (m/s)
REAL, ALLOCATABLE :: wcont (:,:,:) ! Co:ravaria: vertical velocity (m/s)
REAL, ALLOCATABLE :: ptprt (:,:,:,:) ! Perturbation pote:ial temperature
! from that of base state atmosphere (K)
REAL, ALLOCATABLE :: pprt (:,:,:,:) ! Perturbation pressure from that
! of base state atmosphere (Pascal)
REAL, ALLOCATABLE :: qv (:,:,:,:) ! Water vapor specific humidity (kg/kg)
REAL, ALLOCATABLE :: qc (:,:,:,:) ! Cloud water mixing ratio (kg/kg)
REAL, ALLOCATABLE :: qr (:,:,:,:) ! Rain water mixing ratio (kg/kg)
REAL, ALLOCATABLE :: qi (:,:,:,:) ! Cloud ice mixing ratio (kg/kg)
REAL, ALLOCATABLE :: qs (:,:,:,:) ! Snow mixing ratio (kg/kg)
REAL, ALLOCATABLE :: qh (:,:,:,:) ! Hail mixing ratio (kg/kg)
REAL, ALLOCATABLE :: tke (:,:,:,:) ! Turbule: Kinetic Energy ((m/s)**2)
REAL, ALLOCATABLE :: pbldpth(:,:,:) ! Planetary boundary layer depth (m)
REAL, ALLOCATABLE :: kmh (:,:,:) ! Horizo:al turb. mixing coef. for
! mome:um. ( m**2/s )
REAL, ALLOCATABLE :: kmv (:,:,:) ! Vertical turb. mixing coef. for
! mome:um. ( m**2/s )
REAL, ALLOCATABLE :: rprntl(:,:,:) ! Reciprocal of Prandtl number
!
!-----------------------------------------------------------------------
!
! Time tendencies of certain time dependent variables at the lateral
! boundaries, which are used to set the lateral boundary conditions
! for options 4 and 5.
!
!-----------------------------------------------------------------------
!
REAL, ALLOCATABLE :: udteb (:,:) ! Time tendency of u at e-boundary (m/s**2)
REAL, ALLOCATABLE :: udtwb (:,:) ! Time tendency of u at w-boundary (m/s**2)
REAL, ALLOCATABLE :: udtnb (:,:) ! Time tendency of u at n-boundary (m/s**2)
REAL, ALLOCATABLE :: udtsb (:,:) ! Time tendency of u at s-boundary (m/s**2)
REAL, ALLOCATABLE :: vdteb (:,:) ! Time tendency of v at e-boundary (m/s**2)
REAL, ALLOCATABLE :: vdtwb (:,:) ! Time tendency of v at w-boundary (m/s**2)
REAL, ALLOCATABLE :: vdtnb (:,:) ! Time tendency of v at n-boundary (m/s**2)
REAL, ALLOCATABLE :: vdtsb (:,:) ! Time tendency of v at s-boundary (m/s**2)
REAL, ALLOCATABLE :: wdteb (:,:) ! Time tendency of w at e-boundary (m/s**2)
REAL, ALLOCATABLE :: wdtwb (:,:) ! Time tendency of w at w-boundary (m/s**2)
REAL, ALLOCATABLE :: wdtnb (:,:) ! Time tendency of w at n-boundary (m/s**2)
REAL, ALLOCATABLE :: wdtsb (:,:) ! Time tendency of w at s-boundary (m/s**2)
REAL, ALLOCATABLE :: pdteb (:,:) ! Time tendency of pprt at e-boundary (Pascal/s)
REAL, ALLOCATABLE :: pdtwb (:,:) ! Time tendency of pprt at w-boundary (Pascal/s)
REAL, ALLOCATABLE :: pdtnb (:,:) ! Time tendency of pprt at n-boundary (Pascal/s)
REAL, ALLOCATABLE :: pdtsb (:,:) ! Time tendency of pprt at s-boundary (Pascal/s)
REAL, ALLOCATABLE :: sdteb (:,:) ! Time tendency of a scalar at e-boundary (m/s**2)
REAL, ALLOCATABLE :: sdtwb (:,:) ! Time tendency of a scalar at w-boundary (m/s**2)
REAL, ALLOCATABLE :: sdtnb (:,:) ! Time tendency of a scalar at n-boundary (m/s**2)
REAL, ALLOCATABLE :: sdtsb (:,:) ! Time tendency of a scalar at s-boundary (m/s**2)
!
!-----------------------------------------------------------------------
!
! Base state variables:
!
!-----------------------------------------------------------------------
!
REAL, ALLOCATABLE :: ubar (:,:,:) ! Base state u-velocity (m/s)
REAL, ALLOCATABLE :: vbar (:,:,:) ! Base state v-velocity (m/s)
REAL, ALLOCATABLE :: ptbar (:,:,:) ! Base state pote:ial temperature (K)
REAL, ALLOCATABLE :: pbar (:,:,:) ! Base state pressure (Pascal)
REAL, ALLOCATABLE :: ptbari(:,:,:) ! Inverse Base state pot. temperature (K)
REAL, ALLOCATABLE :: pbari (:,:,:) ! Inverse Base state pressure (Pascal)
REAL, ALLOCATABLE :: rhostr(:,:,:) ! Base state density rhobar times j3.
REAL, ALLOCATABLE :: rhostri(:,:,:) ! Inv. base state density rhobar times j3.
REAL, ALLOCATABLE :: qvbar (:,:,:) ! Base state water vapor specific humidity
! (kg/kg)
REAL, ALLOCATABLE :: ppi (:,:,:) ! Exner function.
REAL, ALLOCATABLE :: csndsq(:,:,:) ! Sound wave speed squared.
!
!-----------------------------------------------------------------------
!
! Arrays related to model grid definition:
!
!-----------------------------------------------------------------------
!
REAL, ALLOCATABLE :: x (:) ! The x-coord. of the physical and
! computational grid. Defined at u-poi:.
REAL, ALLOCATABLE :: y (:) ! The y-coord. of the physical and
! computational grid. Defined at v-poi:.
REAL, ALLOCATABLE :: z (:) ! The z-coord. of the computational grid.
! Defined at w-poi: on the staggered grid.
REAL, ALLOCATABLE :: zp (:,:,:) ! The physical height coordinate defined at
! w-poi: of the staggered grid.
REAL, ALLOCATABLE :: hterain(:,:) ! The height of the terrain.
REAL, ALLOCATABLE :: mapfct(:,:,:) ! Map factors at scalar, u and v poi:s
REAL, ALLOCATABLE :: j1 (:,:,:) ! Coordinate transformation Jacobian defined
! as - d( zp )/d( x ).
REAL, ALLOCATABLE :: j2 (:,:,:) ! Coordinate transformation Jacobian defined
! as - d( zp )/d( y ).
REAL, ALLOCATABLE :: j3 (:,:,:) ! Coordinate transformation Jacobian defined
! as d( zp )/d( z ).
REAL, ALLOCATABLE :: aj3x (:,:,:) ! Coordinate transformation Jacobian defined
! as d( zp )/d( z ) AVERAGED IN THE X-DIR.
REAL, ALLOCATABLE :: aj3y (:,:,:) ! Coordinate transformation Jacobian defined
! as d( zp )/d( z ) AVERAGED IN THE Y-DIR.
REAL, ALLOCATABLE :: aj3z (:,:,:) ! Coordinate transformation Jacobian defined
! as d( zp )/d( z ) AVERAGED IN THE Z-DIR.
REAL, ALLOCATABLE :: j3inv (:,:,:) ! Inverse of J3.
REAL, ALLOCATABLE :: trigs1(:) ! Array containing pre-computed trig
! function for fftopt=1.
REAL, ALLOCATABLE :: trigs2(:) ! Array containing pre-computed trig
! function for fftopt=1.
INTEGER :: ifax1(13) ! Array containing the factors of nx for
! fftopt=1.
INTEGER :: ifax2(13) ! Array containing the factors of ny for
! fftopt=1.
REAL, ALLOCATABLE :: vwork1 (:,:) ! 2-D work array for fftopt=2.
REAL, ALLOCATABLE :: vwork2 (:,:) ! 2-D work array for fftopt=2.
REAL, ALLOCATABLE :: wsave1 (:) ! Work array for fftopt =2.
REAL, ALLOCATABLE :: wsave2 (:) ! Work array for fftopt =2.
REAL, ALLOCATABLE :: sinlat(:,:) ! Sin of latitude at each grid point
REAL, ALLOCATABLE :: ptcumsrc(:,:,:) ! Source term in pt-equation due
! to cumulus parameterization
REAL, ALLOCATABLE :: qcumsrc(:,:,:,:) ! Source term in water equations due
! to cumulus parameterization:
! qcumsrc(1,1,1,1) for qv equation
! qcumsrc(1,1,1,2) for qc equation
! qcumsrc(1,1,1,3) for qr equation
! qcumsrc(1,1,1,4) for qi equation
! qcumsrc(1,1,1,5) for qs equation
REAL, ALLOCATABLE :: w0avg(:,:,:) ! a closing running average vertical
! velocity in 10min for K-F scheme
!
!-----------------------------------------------------------------------
!
! Arrays for soil model.
!
!-----------------------------------------------------------------------
!
INTEGER, ALLOCATABLE :: soiltyp(:,:,:) ! Soil type at each point
REAL, ALLOCATABLE :: stypfrct(:,:,:) ! Fraction of soil type
INTEGER, ALLOCATABLE :: vegtyp (:,:) ! Vegetation type at each point
REAL, ALLOCATABLE :: lai (:,:) ! Leaf Area Index
REAL, ALLOCATABLE :: roufns (:,:) ! Surface roughness
REAL, ALLOCATABLE :: veg (:,:) ! Vegetation fraction
REAL, ALLOCATABLE :: tsfc (:,:,:) ! Ground temperature at surface (K)
REAL, ALLOCATABLE :: tsoil (:,:,:) ! Deep soil temperature (K)
REAL, ALLOCATABLE :: wetsfc (:,:,:) ! Surface soil moisture
REAL, ALLOCATABLE :: wetdp (:,:,:) ! Deep soil moisture
REAL, ALLOCATABLE :: wetcanp(:,:,:) ! Canopy water amount
REAL, ALLOCATABLE :: snowdpth(:,:) ! Snow depth (m)
REAL, ALLOCATABLE :: qvsfc (:,:,:) ! Effective sfc. qv
REAL, ALLOCATABLE :: ptsfc (:,:) ! Ground surface potential temperature (K)
REAL, ALLOCATABLE :: raing(:,:) ! Grid supersaturation rain
REAL, ALLOCATABLE :: rainc(:,:) ! Cumulus convective rain
REAL, ALLOCATABLE :: prcrate(:,:,:) ! precipitation rates (kg/(m**2*s))
! prcrate(1,1,1) = total precip. rate
! prcrate(1,1,2) = grid scale precip. rate
! prcrate(1,1,3) = cumulus precip. rate
! prcrate(1,1,4) = microphysics precip. rate
REAL, ALLOCATABLE :: raincv (:,:) ! K-F convective rainfall (cm)
INTEGER, ALLOCATABLE :: nca (:,:) ! K-F counter for CAPE release
!
!-----------------------------------------------------------------------
!
! Arrays for radiation
!
!-----------------------------------------------------------------------
!
INCLUDE 'radcst.inc' ! dimension parameters for radiation
! working arrays and other radiation
! parameters
INTEGER :: rbufsz
REAL, ALLOCATABLE :: radfrc(:,:,:) ! Radiation forcing (K/s)
REAL, ALLOCATABLE :: radsw (:,:) ! Solar radiation reaching the surface
REAL, ALLOCATABLE :: rnflx (:,:) ! Net radiation flux absorbed by surface
REAL, ALLOCATABLE :: rad2d (:,:,:) ! 2-D arrays for radiation (see radcst.inc)
! Buffur array to carry the variables calculated or used in
! radiation calculation. The last index defines the variables:
! 1 = nrsirbm, Solar IR surface albedo for beam
! 2 = nrsirdf, Solar IR surface albedo for diffuse
! 3 = nrsuvbm, Solar UV surface albedo for beam
! 4 = nrsuvdf, Solar UV surface albedo for diffuse
! 5 = ncosz, Cosine of zenith
! 6 = ncosss, Cosine of angle between sun light and
! terrain slope
! 7 = nfdirir, all-sky direct downward IR flux
! (0.7-10 micron) at the surface
! 8 = nfdifir, all-sky diffuse downward IR flux
! at the surface
! 9 = nfdirpar, all-sky direct downward par flux
! (0.4-0.7 micron) at the surface
! 10 = nfdifpar, all-sky diffuse downward par flux
! at the surface
REAL, ALLOCATABLE :: radbuf(:) ! Buffer to carry working arrays for
! radiation computing (see radcst.inc)
!
!-----------------------------------------------------------------------
!
! Arrays that carry surface fluxes
!
!-----------------------------------------------------------------------
!
REAL, ALLOCATABLE :: usflx (:,:) ! Surface flux of u-momentum (kg/(m*s**2))
REAL, ALLOCATABLE :: vsflx (:,:) ! Surface flux of v-momentum (kg/(m*s**2))
REAL, ALLOCATABLE :: ptsflx(:,:) ! Surface heat flux (K*kg/(m*s**2))
REAL, ALLOCATABLE :: qvsflx(:,:) ! Surface moisture flux (kg/(m**2*s))
!
!-----------------------------------------------------------------------
!
! Buffer array that carrys external boundary 3-D arrays
!
!-----------------------------------------------------------------------
!
INTEGER :: exbcbufsz
REAL, ALLOCATABLE :: exbcbuf(:) ! EXBC buffer array
REAL, ALLOCATABLE :: bcrlx(:,:) ! EXBC relaxation function coefficients
!
!-----------------------------------------------------------------------
!
! Work arrays that do not carry physical meaning in the code
!
!-----------------------------------------------------------------------
!
REAL, ALLOCATABLE :: temxy1(:,:) ! Temporary work array, used as phydro
REAL, ALLOCATABLE :: tem1 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem2 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem3 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem4 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem5 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem6 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem7 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem8 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem9 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem10 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem11 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem12 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem13 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem14 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem15 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem16 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem17 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem18 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem19 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem20 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem21 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem22 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem23 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem24 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem25 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem26 (:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem1_0(:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem2_0(:,:,:) ! Temporary work array.
REAL, ALLOCATABLE :: tem3_0(:,:,:) ! Temporary work array.
INTEGER :: frstep ! Flag for the initial time step
INTEGER :: mptr ! Grid identifier.
! integer ireturn ! Returned value from EXTBDT
INTEGER :: ierr, i,j,k
REAL :: cpu0, cpu1, f_cputime, tt
REAL :: eps ! Small value to compensate the roundoff
! error in checking of the end of time
! integration.
DATA eps /0.01/
!
REAL :: testim1, testim2
INTEGER :: skip1,skip2, istatus
!
!=======================================================================
!
!-----------------------------------------------------------------------
!
! Include files:
!
!-----------------------------------------------------------------------
!
INCLUDE 'globcst.inc' ! Global constants that control model
! execution
INCLUDE 'bndry.inc' ! Boundary condition control parameters
INCLUDE 'phycst.inc' ! Physical constants
INCLUDE 'soilcst.inc' ! Soil-vegetation parameters
INCLUDE 'exbc.inc' ! EXBC parameters
INCLUDE 'assim.inc' ! EXBC parameters
!
!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
!
! Beginning of executable code...
!
!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
!
!MP insert: call setupmp () !Message passing code.
!MP insert: call checkmpmx (nx, ny, nz) !Message passing code.
cpu1 = f_cputime
()
WRITE(6,'(/ 16(/5x,a)//)') &
'###############################################################', &
'###############################################################', &
'##### #####', &
'##### Welcome to #####', &
'##### #####', &
'##### The Advanced Regional Prediction System (ARPS) #####', &
'##### #####', &
'##### Version 4.0 #####', &
'##### #####', &
'##### Developed by #####', &
'##### Center for Analysis and Prediction of Storms #####', &
'##### University of Oklahoma #####', &
'##### #####', &
'###############################################################', &
'###############################################################'
mptr = 1 ! Set the grid number to 1 for a single grid run.
nestgrd = 0 ! Set the grid nesting flag to zero, i.e. no nesting.
!
!-----------------------------------------------------------------------
!
! First, initialize the model parameters. Most of them are
! global parameters passed among subroutines through common blocks.
!
! These parameters are declared in the include files:
! globcst.inc, bndry.inc, exbc.inc, radcst.inc etc.
!
!-----------------------------------------------------------------------
!
CALL initpara
(nx,ny,nz,nstyps)
!-----------------------------------------------------------------------
!
! ALLOCATE the variable and Initialize to zero.
!
!-----------------------------------------------------------------------
ALLOCATE( u=0
ALLOCATE( v=0
ALLOCATE( w=0
ALLOCATE(wcont(nx,ny,nz),STAT=istatus)
wcont=0
ALLOCATE(ptprt(nx,ny,nz,nt),STAT=istatus)
ptprt=0
ALLOCATE(pprt(nx,ny,nz,nt),STAT=istatus)
pprt=0
ALLOCATE(qv(nx,ny,nz,nt),STAT=istatus)
qv=0
ALLOCATE(qc(nx,ny,nz,nt),STAT=istatus)
qc=0
ALLOCATE(qr(nx,ny,nz,nt),STAT=istatus)
qr=0
ALLOCATE(qi(nx,ny,nz,nt),STAT=istatus)
qi=0
ALLOCATE(qs(nx,ny,nz,nt),STAT=istatus)
qs=0
ALLOCATE(qh(nx,ny,nz,nt),STAT=istatus)
qh=0
ALLOCATE(tke(nx,ny,nz,nt),STAT=istatus)
tke=0
ALLOCATE(pbldpth(nx,ny,nt),STAT=istatus)
pbldpth=0
ALLOCATE(kmh(nx,ny,nz),STAT=istatus)
kmh=0
ALLOCATE(kmv(nx,ny,nz),STAT=istatus)
kmv=0
ALLOCATE(rprntl(nx,ny,nz),STAT=istatus)
rprntl=0
ALLOCATE(udteb(ny,nz),STAT=istatus)
udteb=0
ALLOCATE(udtwb(ny,nz),STAT=istatus)
udtwb=0
ALLOCATE(udtnb(nx,nz),STAT=istatus)
udtnb=0
ALLOCATE(udtsb(nx,nz),STAT=istatus)
udtsb=0
ALLOCATE(vdteb(ny,nz),STAT=istatus)
vdteb=0
ALLOCATE(vdtwb(ny,nz),STAT=istatus)
vdtwb=0
ALLOCATE(vdtnb(nx,nz),STAT=istatus)
vdtnb=0
ALLOCATE(vdtsb(nx,nz),STAT=istatus)
vdtsb=0
ALLOCATE(wdteb(ny,nz),STAT=istatus)
wdteb=0
ALLOCATE(wdtwb(ny,nz),STAT=istatus)
wdtwb=0
ALLOCATE(wdtnb(nx,nz),STAT=istatus)
wdtnb=0
ALLOCATE(wdtsb(nx,nz),STAT=istatus)
wdtsb=0
ALLOCATE(pdteb(ny,nz),STAT=istatus)
pdteb=0
ALLOCATE(pdtwb(ny,nz),STAT=istatus)
pdtwb=0
ALLOCATE(pdtnb(nx,nz),STAT=istatus)
pdtnb=0
ALLOCATE(pdtsb(nx,nz),STAT=istatus)
pdtsb=0
ALLOCATE(sdteb(ny,nz),STAT=istatus)
sdteb=0
ALLOCATE(sdtwb(ny,nz),STAT=istatus)
sdtwb=0
ALLOCATE(sdtnb(nx,nz),STAT=istatus)
sdtnb=0
ALLOCATE(sdtsb(nx,nz),STAT=istatus)
sdtsb=0
ALLOCATE(ubar(nx,ny,nz),STAT=istatus)
ubar=0
ALLOCATE(vbar(nx,ny,nz),STAT=istatus)
vbar=0
ALLOCATE(ptbar(nx,ny,nz),STAT=istatus)
ptbar=0
ALLOCATE(pbar(nx,ny,nz),STAT=istatus)
pbar=0
ALLOCATE(ptbari(nx,ny,nz),STAT=istatus)
ptbari=0
ALLOCATE(pbari(nx,ny,nz),STAT=istatus)
pbari=0
ALLOCATE(rhostr(nx,ny,nz),STAT=istatus)
rhostr=0
ALLOCATE(rhostri(nx,ny,nz),STAT=istatus)
rhostri=0
ALLOCATE(qvbar(nx,ny,nz),STAT=istatus)
qvbar=0
ALLOCATE(ppi(nx,ny,nz),STAT=istatus)
ppi=0
ALLOCATE(csndsq(nx,ny,nz),STAT=istatus)
csndsq=0
ALLOCATE( x=0
ALLOCATE( y=0
ALLOCATE( z=0
ALLOCATE(zp(nx,ny,nz),STAT=istatus)
zp=0
ALLOCATE(hterain(nx,ny),STAT=istatus)
hterain=0
ALLOCATE(mapfct(nx,ny,8),STAT=istatus)
mapfct=0
ALLOCATE(j1(nx,ny,nz),STAT=istatus)
j1=0
ALLOCATE(j2(nx,ny,nz),STAT=istatus)
j2=0
ALLOCATE(j3(nx,ny,nz),STAT=istatus)
j3=0
ALLOCATE(aj3x(nx,ny,nz),STAT=istatus)
aj3x=0
ALLOCATE(aj3y(nx,ny,nz),STAT=istatus)
aj3y=0
ALLOCATE(aj3z(nx,ny,nz),STAT=istatus)
aj3z=0
ALLOCATE(j3inv(nx,ny,nz),STAT=istatus)
j3inv=0
ALLOCATE(trigs1(3*(nx-1)/2+1),STAT=istatus)
trigs1=0
ALLOCATE(trigs2(3*(ny-1)/2+1),STAT=istatus)
trigs2=0
ALLOCATE(vwork1(nx+1,ny+1),STAT=istatus)
vwork1=0
ALLOCATE(vwork2(ny,nx+1),STAT=istatus)
vwork2=0
ALLOCATE(wsave1(3*(ny-1)+15),STAT=istatus)
wsave1=0
ALLOCATE(wsave2(3*(nx-1)+15),STAT=istatus)
wsave2=0
ALLOCATE(sinlat(nx,ny),STAT=istatus)
sinlat=0
ALLOCATE(ptcumsrc(nx,ny,nz),STAT=istatus)
ptcumsrc=0
ALLOCATE(qcumsrc(nx,ny,nz,5),STAT=istatus)
qcumsrc=0
ALLOCATE(w0avg(nx,ny,nz),STAT=istatus)
w0avg=0
ALLOCATE(soiltyp(nx,ny,nstyps),STAT=istatus)
soiltyp=0
ALLOCATE(stypfrct(nx,ny,nstyps),STAT=istatus)
stypfrct=0
ALLOCATE(vegtyp(nx,ny),STAT=istatus)
vegtyp=0
ALLOCATE(lai(nx,ny),STAT=istatus)
lai=0
ALLOCATE(roufns(nx,ny),STAT=istatus)
roufns=0
ALLOCATE(veg(nx,ny),STAT=istatus)
veg=0
ALLOCATE(tsfc(nx,ny,0:nstyps),STAT=istatus)
tsfc=0
ALLOCATE(tsoil(nx,ny,0:nstyps),STAT=istatus)
tsoil=0
ALLOCATE(wetsfc(nx,ny,0:nstyps),STAT=istatus)
wetsfc=0
ALLOCATE(wetdp(nx,ny,0:nstyps),STAT=istatus)
wetdp=0
ALLOCATE(wetcanp(nx,ny,0:nstyps),STAT=istatus)
wetcanp=0
ALLOCATE(snowdpth(nx,ny),STAT=istatus)
snowdpth=0
ALLOCATE(qvsfc(nx,ny,0:nstyps),STAT=istatus)
qvsfc=0
ALLOCATE(ptsfc(nx,ny),STAT=istatus)
ptsfc=0
ALLOCATE(raing(nx,ny),STAT=istatus)
raing=0
ALLOCATE(rainc(nx,ny),STAT=istatus)
rainc=0
ALLOCATE(prcrate(nx,ny,4),STAT=istatus)
prcrate=0
ALLOCATE(raincv(nx,ny),STAT=istatus)
raincv=0
ALLOCATE(nca(nx,ny),STAT=istatus)
nca=0
ALLOCATE(radfrc(nx,ny,nz),STAT=istatus)
radfrc=0
ALLOCATE(radsw(nx,ny),STAT=istatus)
radsw=0
ALLOCATE(rnflx(nx,ny),STAT=istatus)
rnflx=0
ALLOCATE(usflx(nx,ny),STAT=istatus)
usflx=0
ALLOCATE(vsflx(nx,ny),STAT=istatus)
vsflx=0
ALLOCATE(ptsflx(nx,ny),STAT=istatus)
ptsflx=0
ALLOCATE(qvsflx(nx,ny),STAT=istatus)
qvsflx=0
ALLOCATE(bcrlx(nx,ny),STAT=istatus)
bcrlx=0
ALLOCATE(temxy1(nx,ny),STAT=istatus)
temxy1=0
ALLOCATE(tem1(nx,ny,nz),STAT=istatus)
tem1=0
ALLOCATE(tem2(nx,ny,nz),STAT=istatus)
tem2=0
ALLOCATE(tem3(nx,ny,nz),STAT=istatus)
tem3=0
ALLOCATE(tem4(nx,ny,nz),STAT=istatus)
tem4=0
ALLOCATE(tem5(nx,ny,nz),STAT=istatus)
tem5=0
ALLOCATE(tem6(nx,ny,nz),STAT=istatus)
tem6=0
ALLOCATE(tem7(nx,ny,nz),STAT=istatus)
tem7=0
ALLOCATE(tem8(nx,ny,nz),STAT=istatus)
tem8=0
ALLOCATE(tem9(nx,ny,nz),STAT=istatus)
tem9=0
ALLOCATE(tem10(nx,ny,nz),STAT=istatus)
tem10=0
ALLOCATE(tem11(nx,ny,nz),STAT=istatus)
tem11=0
ALLOCATE(tem12(nx,ny,nz),STAT=istatus)
tem12=0
ALLOCATE(tem13(nx,ny,nz),STAT=istatus)
tem13=0
ALLOCATE(tem14(nx,ny,nz),STAT=istatus)
tem14=0
ALLOCATE(tem15(nx,ny,nz),STAT=istatus)
tem15=0
ALLOCATE(tem16(nx,ny,nz),STAT=istatus)
tem16=0
ALLOCATE(tem17(nx,ny,nz),STAT=istatus)
tem17=0
ALLOCATE(tem18(nx,ny,nz),STAT=istatus)
tem18=0
ALLOCATE(tem19(nx,ny,nz),STAT=istatus)
tem19=0
ALLOCATE(tem20(nx,ny,nz),STAT=istatus)
tem20=0
ALLOCATE(tem21(nx,ny,nz),STAT=istatus)
tem21=0
ALLOCATE(tem22(nx,ny,nz),STAT=istatus)
tem22=0
ALLOCATE(tem23(nx,ny,nz),STAT=istatus)
tem23=0
ALLOCATE(tem24(nx,ny,nz),STAT=istatus)
tem24=0
ALLOCATE(tem25(nx,ny,nz),STAT=istatus)
tem25=0
ALLOCATE(tem26(nx,ny,nz),STAT=istatus)
tem26=0
ALLOCATE(tem1_0(0:nx,0:ny,0:nz),STAT=istatus)
tem1_0=0
ALLOCATE(tem2_0(0:nx,0:ny,0:nz),STAT=istatus)
tem2_0=0
ALLOCATE(tem3_0(0:nx,0:ny,0:nz),STAT=istatus)
tem3_0=0
!-----------------------------------------------------------------------
! Set radiation and external boundary work array buffer sizes:
IF (radopt == 2) THEN
rbufsz = n2d_radiat*nx*ny + n3d_radiat*nx*ny*nz
ELSE
rbufsz = 1
END IF
ALLOCATE(radbuf(rbufsz),STAT=istatus)
ALLOCATE(rad2d (nx,ny,nrad2d),STAT=istatus)
IF (lbcopt == 2) THEN
exbcbufsz = 22*nx*ny*nz
ELSE
exbcbufsz = 1
END IF
ALLOCATE(exbcbuf( exbcbufsz ),STAT=istatus)
!
CALL initassim
(nx,ny,nz)
IF ( lbcopt == 2 ) CALL setexbcptr
(nx,ny,nz)
!
!-----------------------------------------------------------------------
!
! Initialize all arrays and variables, and set initial
! condition for thermal disturbance if desired.
!
!-----------------------------------------------------------------------
!
CALL initial
(mptr,nx,ny,nz,nstyps, exbcbufsz, &
u,v,w,wcont,ptprt,pprt,qv,qc,qr,qi,qs,qh,tke, &
udteb,udtwb,udtnb,udtsb,vdteb,vdtwb,vdtnb,vdtsb, &
wdteb,wdtwb,wdtnb,wdtsb,pdteb,pdtwb,pdtnb,pdtsb, &
sdteb,sdtwb,sdtnb,sdtsb, &
ubar,vbar,ptbar,pbar,ptbari,pbari,rhostr,rhostri, &
qvbar,ppi,csndsq, &
x,y,z,zp,hterain,mapfct, &
j1,j2,j3,aj3x,aj3y,aj3z,j3inv, &
trigs1,trigs2,ifax1,ifax2, &
wsave1,wsave2,vwork1,vwork2, &
sinlat,kmh,kmv,rprntl, &
soiltyp,stypfrct,vegtyp,lai,roufns,veg, &
tsfc,tsoil,wetsfc,wetdp,wetcanp,snowdpth,ptsfc,qvsfc, &
ptcumsrc,qcumsrc,w0avg,nca,raincv, &
raing,rainc,prcrate, exbcbuf,bcrlx, &
radfrc,radsw,rnflx, &
usflx,vsflx,ptsflx,qvsflx,temxy1, &
tem1,tem2,tem3,tem4,tem5,tem6,tem7, &
tem8,tem9,tem10,tem11,tem12,tem13, &
tem14,tem15,tem16,tem17,tem18,tem19, &
tem20,tem21,tem22,tem23,tem24,tem25,tem26, &
tem1_0,tem2_0,tem3_0)
!MP insert: call mpbarrier () !Message passing code.
!
! open(unit=83,file='voltim.input',form='formatted',status='old')
! read (83,*) voltim1
! read (83,*) voltim2
! read (83,*) voltim3
! close(unit=83)
!
testim1 = voltim1+dtbig
testim2 = voltim2+dtbig
skip1 = 0
skip2 = 0
!
WRITE(6,*) '===> voltim1,2,3 = ',voltim1,voltim2,voltim3
WRITE(6,*) '===> testim1,2 = ',testim1,testim2
!
!=======================================================================
!
!
!-----------------------------------------------------------------------
!
! The current model time (initial time):
!
!-----------------------------------------------------------------------
!
curtim = tstart
WRITE(6,'(1x,a,f13.3,a)') &
'The initial model time is at ', curtim,' seconds.'
!
!-----------------------------------------------------------------------
!
! Output the initial fields
!
!-----------------------------------------------------------------------
!
CALL initout
(mptr,nx,ny,nz,nstyps,exbcbufsz, &
u,v,w,wcont,ptprt,pprt,qv,qc,qr,qi,qs,qh,tke, &
ubar,vbar,ptbar,pbar,rhostr,qvbar,kmh,kmv, &
x,y,z,zp,hterain,mapfct,j1,j2,j3,j3inv, &
soiltyp,stypfrct,vegtyp,lai,roufns,veg, &
tsfc,tsoil,wetsfc,wetdp,wetcanp,snowdpth, &
raing,rainc,prcrate,exbcbuf, &
radfrc,radsw,rnflx, &
usflx,vsflx,ptsflx,qvsflx, &
tem1,tem2,tem3,tem4,tem5,tem6,tem7, &
tem8,tem9,tem10,tem11)
!MP insert: call mpbarrier () !Message passing code.
nstep = nint( curtim/dtbig )
!
!-----------------------------------------------------------------------
!
! Time integration loop begins ----------------------------------->
!
!-----------------------------------------------------------------------
!
900 CONTINUE ! Entry point of time step integration.
!
!-----------------------------------------------------------------------
!
! Define the time step counter nstep reference to time zero
! (curtim=0.0). This means for tstart.ne.0 case, nstep for the
! first step of integration is not 1.
!
!-----------------------------------------------------------------------
!
nstep = nstep + 1
IF( (ABS(curtim-tstart) <= 1.0E-10) .AND. (restrt /= 1) ) THEN
frstep=1 ! Indicate that this is the initial step of
! model integration. For this step, a forward
! time integration scheme will be used.
ELSE ! For non-first step or restart run
frstep=0 ! When frstep=0, leapfrog scheme is used.
END IF
!
!-----------------------------------------------------------------------
!
! Perform one time step integration for all equations:
! On exit of this routine, all time dependent fields are
! advanced by one time step.
!
!-----------------------------------------------------------------------
!
CALL cordintg
(mptr,frstep, nx,ny,nz,rbufsz,nstyps,exbcbufsz, &
u,v,w,wcont,ptprt,pprt,qv,qc,qr,qi,qs,qh, &
tke,pbldpth, &
udteb,udtwb,udtnb,udtsb,vdteb,vdtwb,vdtnb,vdtsb, &
wdteb,wdtwb,wdtnb,wdtsb,pdteb,pdtwb,pdtnb,pdtsb, &
sdteb,sdtwb,sdtnb,sdtsb, &
ubar,vbar,ptbar,pbar,ptbari,pbari,rhostr,rhostri, &
qvbar,ppi,csndsq, &
x,y,z,zp, mapfct, &
j1,j2,j3,aj3x,aj3y,aj3z,j3inv, &
trigs1,trigs2,ifax1,ifax2, &
wsave1,wsave2,vwork1,vwork2, &
sinlat, kmh,kmv,rprntl, &
soiltyp,stypfrct,vegtyp,lai,roufns,veg, &
tsfc,tsoil,wetsfc,wetdp,wetcanp,snowdpth, &
ptsfc,qvsfc, &
ptcumsrc,qcumsrc,raing,rainc,prcrate, &
w0avg,nca,raincv, &
radfrc,radsw,rnflx,rad2d,radbuf,exbcbuf,bcrlx, &
usflx,vsflx,ptsflx,qvsflx,temxy1, &
tem1,tem2,tem3,tem4,tem5,tem6,tem7, &
tem8,tem9,tem10,tem11,tem12,tem13, &
tem14,tem15,tem16,tem17,tem18,tem19, &
tem20,tem21,tem22,tem23,tem24,tem25,tem26, &
tem1_0,tem2_0,tem3_0)
!
!-----------------------------------------------------------------------
!
! Update physical time and generate output files
!
!-----------------------------------------------------------------------
!
curtim = curtim + dtbig
!
!-----------------------------------------------------------------------
!
! Print timestep marker
!
!-----------------------------------------------------------------------
!
WRITE(6,'(a,i8,a,f10.2,a)') &
' End of integration time step ', nstep, &
', Model time=',curtim,' (S)'
CALL output
(mptr,nx,ny,nz,nstyps,exbcbufsz, &
u,v,w,wcont,ptprt,pprt,qv,qc,qr,qi,qs,qh,tke, &
udteb,udtwb,vdtnb,vdtsb,pdteb,pdtwb,pdtnb,pdtsb, &
ubar,vbar,ptbar,pbar,rhostr,qvbar,kmh,kmv, &
x,y,z,zp,hterain, mapfct, j1,j2,j3,j3inv, &
soiltyp,stypfrct,vegtyp,lai,roufns,veg, &
tsfc,tsoil,wetsfc,wetdp,wetcanp,snowdpth,qvsfc, &
ptcumsrc,qcumsrc,w0avg,nca,raincv, &
raing,rainc,prcrate,exbcbuf, &
radfrc,radsw,rnflx, &
usflx,vsflx,ptsflx,qvsflx, &
tem1, tem2,tem3,tem4,tem5, tem6,tem7, &
tem8,tem9,tem10,tem11)
!
!-----------------------------------------------------------------------
!
! Check the stability of the integration. If the model solution
! appears to be exceeding the linear stability condition, then
! perform a data dump for post-mortem.
!
!-----------------------------------------------------------------------
!
cpu0 = f_cputime
()
DO k=1,nz-1
DO j=1,ny-1
DO i=1,nx-1
tem11(i,j,k) = rhostr(i,j,k)*j3inv(i,j,k)
END DO
END DO
END DO
CALL chkstab
(mptr,nx,ny,nz,nstyps, &
u,v,w,wcont,ptprt,pprt,qv,qc,qr,qi,qs,qh,tke, &
ubar,vbar,ptbar,pbar,tem11,qvbar,kmh,kmv, &
x,y,z,zp,hterain,mapfct, j1,j2,j3, &
soiltyp,stypfrct,vegtyp,lai,roufns,veg, &
tsfc,tsoil,wetsfc,wetdp,wetcanp,snowdpth, &
raing,rainc,prcrate, &
radfrc,radsw,rnflx, &
usflx,vsflx,ptsflx,qvsflx, &
tem1,tem2,tem3,tem4)
!
!-----------------------------------------------------------------------
!
! Calculate and apply the adjustment of domain translation
! speed using either cell-tracking or optimal mean speed algorithm.
!
!-----------------------------------------------------------------------
!
CALL grdtran
(nx,ny,nz,ubar,vbar,u,v,w,ptprt,pprt, &
qv,qc,qr,qi,qs,qh,qvbar,rhostr,x,y,zp,j3,j3inv, &
tem1,tem2,tem3,tem4,tem5,tem6,tem7, &
tem8,tem9,tem10,tem11)
! misc_cpu_time = misc_cpu_time + f_cputime() - cpu0
!
!-----------------------------------------------------------------------
!
! Time integration loop ends, go back to the beginning of the
! time step loop if stop time is not reached.
!
!-----------------------------------------------------------------------
!
IF( curtim >= testim1 .AND. skip1 == 0 ) THEN
skip1 = 1
nstep = nint(voltim2/dtbig)
curtim = FLOAT(nstep) * dtbig
ELSE IF( curtim >= testim2 .AND. skip2 == 0 ) THEN
skip2 = 1
nstep = nint(voltim3/dtbig)
curtim = FLOAT(nstep) * dtbig
END IF
!
!=======================================================================
!
IF( curtim+eps*dtbig < tstop ) GO TO 900
!
!-----------------------------------------------------------------------
!
! End of entire model time integration. The program stops.
!
! Close opened files.
!
!-----------------------------------------------------------------------
!
IF (hdmpfmt == 5) THEN
CALL mclosescheme (gridid, ierr)
CALL mclosedataset (dsindex, ierr)
ELSE IF (hdmpfmt == 9) THEN
CLOSE (nchdmp)
END IF
WRITE(6,'(//1x,a,/1x,a,f13.3,a,/1x,a)') &
'ARPS stopped normally in the main program. ', &
'The ending time was ', curtim,' seconds.', &
'Thanks for using ARPS.'
! total_cpu_time = total_cpu_time + f_cputime() - cpu1
! IF(mphyopt == 1) warmrain_cpu_time = warmrain_cpu_time &
! - qfall_cpu_time
! IF(mphyopt == 2) linice_cpu_time = linice_cpu_time &
! - qfall_cpu_time
! IF(mphyopt == 3) nemice_cpu_time = nemice_cpu_time &
! - qfall_cpu_time
!
!-----------------------------------------------------------------------
!
! Sum up the CPU times used by all processors on MPP machines.
!
!-----------------------------------------------------------------------
!
!tmp samex
!cMP insert: call mptotal(total_cpu_time) !Message passing code.
!cMP insert: call mptotal(init_cpu_time) !Message passing code.
!cMP insert: call mptotal(output_cpu_time) !Message passing code.
!cMP insert: call mptotal(advuvw_cpu_time) !Message passing code.
!cMP insert: call mptotal(advs_cpu_time) !Message passing code.
!cMP insert: call mptotal(coriol_cpu_time) !Message passing code.
!cMP insert: call mptotal(smlstp_cpu_time) !Message passing code.
!cMP insert: call mptotal(rad_cpu_time) !Message passing code.
!cMP insert: call mptotal(soil_cpu_time) !Message passing code.
!cMP insert: call mptotal(sfcphy_cpu_time) !Message passing code.
!cMP insert: call mptotal(tmix_cpu_time) !Message passing code.
!cMP insert: call mptotal(cmix_cpu_time) !Message passing code.
!cMP insert: call mptotal(raydmp_cpu_time) !Message passing code.
!cMP insert: call mptotal(tkesrc_cpu_time) !Message passing code.
!cMP insert: call mptotal(bc_cpu_time) !Message passing code.
!cMP insert: call mptotal(qpfgrd_cpu_time) !Message passing code.
!cMP insert: call mptotal(kuocum_cpu_time) !Message passing code.
!cMP insert: call mptotal(kfcum_cpu_time) !Message passing code.
!cMP insert: call mptotal(warmrain_cpu_time) !Message passing code.
!cMP insert: call mptotal(linice_cpu_time) !Message passing code.
!cMP insert: call mptotal(nemice_cpu_time) !Message passing code.
!cMP insert: call mptotal(qfall_cpu_time) !Message passing code.
!cMP insert: call mptotal(misc_cpu_time) !Message passing code.
!cMP insert: call mptotal(buoy_cpu_time) !Message passing code.
!
!-----------------------------------------------------------------------
!
! Print out CPU usage by various processes.
!
!-----------------------------------------------------------------------
!
!MP insert: if (myproc .eq. 0) then !Message passing code.
! tt = total_cpu_time * 0.01
! WRITE(6,'(a/a,25(/1x,a,e14.6,a,6x,f6.2,a))') &
! ' Process CPU time used Percentage', &
! '-----------------------------------------------', &
! 'Initialization :',init_cpu_time, 's',init_cpu_time/tt, '%', &
! 'Data output :',output_cpu_time, 's',output_cpu_time/tt,'%', &
! 'Wind advection :',advuvw_cpu_time, 's',advuvw_cpu_time/tt,'%', &
! 'Scalar advection:',advs_cpu_time, 's',advs_cpu_time/tt, '%', &
! 'Coriolis force :',coriol_cpu_time, 's',coriol_cpu_time/tt,'%', &
! 'Buoyancy term :',buoy_cpu_time, 's',buoy_cpu_time/tt, '%', &
! 'Small time steps:',smlstp_cpu_time, 's',smlstp_cpu_time/tt,'%', &
! 'Radiation :',rad_cpu_time, 's',rad_cpu_time/tt, '%', &
! 'Soil model :',soil_cpu_time, 's',soil_cpu_time/tt, '%', &
! 'Surface physics :',sfcphy_cpu_time, 's',sfcphy_cpu_time/tt,'%', &
! 'Turbulence :',tmix_cpu_time, 's',tmix_cpu_time/tt, '%', &
! 'Comput. mixing :',cmix_cpu_time, 's',cmix_cpu_time/tt, '%', &
! 'Rayleigh damping:',raydmp_cpu_time, 's',raydmp_cpu_time/tt,'%', &
! 'TKE src terms :',tkesrc_cpu_time, 's',tkesrc_cpu_time/tt,'%', &
! 'Bound.conditions:',bc_cpu_time, 's',bc_cpu_time/tt, '%', &
! 'Gridscale precp.:',qpfgrd_cpu_time, 's',qpfgrd_cpu_time/tt,'%', &
! 'Kuo cumulus :',kuocum_cpu_time, 's',kuocum_cpu_time/tt,'%', &
! 'Kain-Fritsch :',kfcum_cpu_time, 's',kfcum_cpu_time/tt, '%', &
! 'Warmrain microph:',warmrain_cpu_time,'s',warmrain_cpu_time/tt, &
! '%', &
! 'Lin ice microph :',linice_cpu_time, 's',linice_cpu_time/tt,'%', &
! 'NEM ice microph :',nemice_cpu_time, 's',nemice_cpu_time/tt,'%', &
! 'Hydrometero fall:',qfall_cpu_time, 's',qfall_cpu_time/tt,'%', &
! 'Miscellaneous :',misc_cpu_time, 's',misc_cpu_time/tt, '%'
! WRITE(6,'(/1x,a,e14.6,a,6x,f6.2,a)') &
! 'Entire model :',total_cpu_time, 's',total_cpu_time/tt, '%'
! WRITE(6,'(/1x,a,f6.2,a)') &
! 'Total CPU time accounted for=', &
! (init_cpu_time+output_cpu_time+sfcphy_cpu_time+soil_cpu_time+ &
! rad_cpu_time+ &
! tmix_cpu_time+cmix_cpu_time+raydmp_cpu_time+advuvw_cpu_time+ &
! advs_cpu_time+coriol_cpu_time+tkesrc_cpu_time+bc_cpu_time+ &
! qpfgrd_cpu_time+kuocum_cpu_time+warmrain_cpu_time+smlstp_cpu_time+ &
! linice_cpu_time+nemice_cpu_time+misc_cpu_time+buoy_cpu_time+ &
! qfall_cpu_time)/tt, &
! '%'
!MP insert: ENDIF !Message passing code.
STOP
END PROGRAM ARPSASSIM