#define WSM6_OPTIM
#define INL
#ifdef WSM6_OPTIM
#if (RWORDSIZE == DWORDSIZE)
# define VREC(A,B,C) vrec(A,B,C)
# define VSQRT(A,B,C) vsqrt(A,B,C)
#else
# define VREC(A,B,C) vsrec(A,B,C)
# define VSQRT(A,B,C) vssqrt(A,B,C)
#endif
#endif
MODULE module_mp_wsm6 1
!
!
REAL, PARAMETER, PRIVATE :: dtcldcr = 120.
REAL, PARAMETER, PRIVATE :: n0r = 8.e6
REAL, PARAMETER, PRIVATE :: n0g = 4.e6
REAL, PARAMETER, PRIVATE :: avtr = 841.9
REAL, PARAMETER, PRIVATE :: bvtr = 0.8
REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m
REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency
REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80
REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1
REAL, PARAMETER, PRIVATE :: avts = 11.72
REAL, PARAMETER, PRIVATE :: bvts = .41
REAL, PARAMETER, PRIVATE :: avtg = 330.
REAL, PARAMETER, PRIVATE :: bvtg = 0.8
REAL, PARAMETER, PRIVATE :: deng = 500.
REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! t=-90C unlimited
REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4
REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5
REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4
REAL, PARAMETER, PRIVATE :: betai = .6
REAL, PARAMETER, PRIVATE :: xn0 = 1.e-2
REAL, PARAMETER, PRIVATE :: dicon = 11.9
REAL, PARAMETER, PRIVATE :: di0 = 12.9e-6
REAL, PARAMETER, PRIVATE :: dimax = 500.e-6
REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent n0s
REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s
REAL, PARAMETER, PRIVATE :: pfrz1 = 100.
REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66
REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9
REAL, PARAMETER, PRIVATE :: t40c = 233.16
REAL, PARAMETER, PRIVATE :: eacrc = 1.0
REAL, PARAMETER, PRIVATE :: dens = 100.0
REAL, PARAMETER, PRIVATE :: qs0 = 6.e-4 ! pgaut
REAL, SAVE :: &
qc0, qck1,bvtr1,bvtr2,bvtr3,bvtr4,g1pbr,&
g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, &
bvtr6,g6pbr, &
precr1,precr2,xm0,xmmax,roqimax,bvts1, &
bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, &
g5pbso2,pvts,pacrs,precs1,precs2,pidn0r,&
pidn0s,xlv1,pacrc, &
bvtg1,bvtg2,bvtg3,bvtg4,g1pbg, &
g3pbg,g4pbg,g5pbgo2,pvtg,pacrg, &
precg1,precg2,pidn0g, &
vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi, &
rslopermax,rslopesmax,rslopegmax, &
rsloperbmax,rslopesbmax,rslopegbmax, &
rsloper2max,rslopes2max,rslopeg2max, &
rsloper3max,rslopes3max,rslopeg3max
!#######################################################################
!ARPS special parameters, hard-coded based on contants in share/module_model_constants.F
!
REAL , PARAMETER :: g = 9.81 ! acceleration due to gravity (m {s}^-2)
REAL , PARAMETER :: rd = 287.
REAL , PARAMETER :: rv = 461.6
REAL , PARAMETER :: cp = 7.*rd/2.
REAL , PARAMETER :: cpv = cp-rd
REAL , PARAMETER :: cliq = 4190.
REAL , PARAMETER :: cice = 2106.
REAL , PARAMETER :: psat = 610.78
REAL , PARAMETER :: denr = 1000.
REAL , PARAMETER :: den0 = 1.28
REAL , PARAMETER :: ep1 = rv/rd-1.
REAL , PARAMETER :: ep2 = rd/rv
REAL , PARAMETER :: qmin = 1.E-15
REAL , PARAMETER :: t0c = 273.15
REAL , PARAMETER :: XLS = 2.85E6
REAL , PARAMETER :: XLV = 2.5E6
REAL , PARAMETER :: XLF0 = 3.50E5
#ifdef WSM6_OPTIM
PRIVATE :: vrec, vsrec, vsqrt, vssqrt
#endif
CONTAINS
!===================================================================
!
SUBROUTINE wsm6(th, q, qc, qr, qi, qs, qg, &,1
w, den, pii, p, delz, rain, rainncv, &
delt, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
!
! This code is a GRAUPEL phase ice microphyiscs scheme (WSM6) of the WRF
! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei
! number concentration is a function of temperature, and seperate assumption
! is developed, in which ice crystal number concentration is a function
! of ice amount. Related changes in ice-microphysics and description of
! other microphysics are described in Hong et al. (2004).
! all units are m.k.s. and source/sink terms are kgkg-1s-1.
!
! WRFSMMP cloud scheme
!
! Coded by Song-You Hong and Jeong-Ock Lim (Yonsei Univ.)
! Jimy Dudhia (NCAR) and Shu-Hua Chen (UC Davis)
! Summer 2003
!
! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev.
! Lim (2004) Master thesis, Yonsei Univ.
! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor.
! Rutledge, Hobbs (RH, 1983) J. Atmos. Sci.
! Rutledge, Hobbs (RH, 1984) J. Atmos. Sci.
!
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , &
ims,ime, jms,jme, kms,kme , &
its,ite, jts,jte, kts,kte
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
INTENT(INOUT) :: &
th, &
q, &
qc, &
qi, &
qr, &
qs, &
qg
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
INTENT(IN ) :: w, &
den, &
pii, &
p, &
delz
REAL, DIMENSION( ims:ime , jms:jme ), &
INTENT(INOUT) :: rain, &
rainncv
REAL, INTENT(IN ) :: delt
! LOCAL VAR
REAL, DIMENSION( its:ite , kts:kte ) :: t
REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci
REAL, DIMENSION( its:ite , kts:kte, 3 ) :: qrs
INTEGER :: i,j,k
!-------------------------------------------------------------------
DO j=jts,jte
DO k=kts,kte
DO i=its,ite
t(i,k)=th(i,k,j)*pii(i,k,j)
qci(i,k,1) = qc(i,k,j)
qci(i,k,2) = qi(i,k,j)
qrs(i,k,1) = qr(i,k,j)
qrs(i,k,2) = qs(i,k,j)
qrs(i,k,3) = qg(i,k,j)
ENDDO
ENDDO
CALL wsm62D_WRF
(t, q(ims,kms,j), qci, qrs, &
w(ims,kms,j), den(ims,kms,j), &
p(ims,kms,j), delz(ims,kms,j), rain(ims,j), &
rainncv(ims,j),delt, &
j, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
DO K=kts,kte
DO I=its,ite
th(i,k,j)=t(i,k)/pii(i,k,j)
qc(i,k,j) = qci(i,k,1)
qi(i,k,j) = qci(i,k,2)
qr(i,k,j) = qrs(i,k,1)
qs(i,k,j) = qrs(i,k,2)
qg(i,k,j) = qrs(i,k,3)
ENDDO
ENDDO
ENDDO
END SUBROUTINE wsm6
!===================================================================
!
! Original version from WRFV2.1.2
!
SUBROUTINE wsm62D_WRF(t, q, qci, qrs, w, den, p, & 2,2
delz, rain, rainncv,delt, &
lat, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , &
ims,ime, jms,jme, kms,kme , &
its,ite, jts,jte, kts,kte, &
lat
! REAL, DIMENSION( its:ite , kts:kte ), &
! INTENT(INOUT) :: &
! t
! REAL, DIMENSION( its:ite , kts:kte, 2 ), &
! INTENT(INOUT) :: &
! qci
! REAL, DIMENSION( its:ite , kts:kte, 3 ), &
! INTENT(INOUT) :: &
! qrs
REAL, DIMENSION( ims:ime , kms:kme ), INTENT(INOUT) :: t
REAL, DIMENSION( ims:ime , kms:kme, 2 ), INTENT(INOUT) :: qci
REAL, DIMENSION( ims:ime , kms:kme, 3 ), INTENT(INOUT) :: qrs
REAL, DIMENSION( ims:ime , kms:kme ), &
INTENT(INOUT) :: &
q
REAL, DIMENSION( ims:ime , kms:kme ), &
INTENT(IN ) :: w, &
den, &
p, &
delz
REAL, DIMENSION( ims:ime ), &
INTENT(INOUT) :: rain, &
rainncv
REAL, INTENT(IN ) :: delt
! LOCAL VAR
REAL, DIMENSION( its:ite , kts:kte , 3) :: &
rh, qs, rslope, rslope2, rslope3, rslopeb, &
paut, pres, falk, fall, work1
REAL, DIMENSION( its:ite , kts:kte ) :: &
falkc, work1c, work2c, fallc
REAL, DIMENSION( its:ite , kts:kte) :: &
pracw, psacw, pgacw, pgacr, pgacs, psaci, pgml, praci, &
piacr, pracs, psacr, pgaci, pseml, pgeml
REAL, DIMENSION( its:ite , kts:kte ) :: &
pgen, pisd, pcon, xl, cpm, work2, psml, psev, denfac, &
xni, pgev,n0sfac
REAL, DIMENSION( its:ite ) :: tvec1
INTEGER, DIMENSION( its:ite ) :: mstep, numdt
LOGICAL, DIMENSION( its:ite ) :: flgcld
REAL :: pi, &
cpmcal, xlcal, lamdar, lamdas, lamdag, diffus, &
viscos, xka, venfac, conden, diffac, &
x, y, z, a, b, c, d, e, &
qdt, holdrr, holdrs, holdrg, supcol, pvt, &
coeres, supsat, dtcld, xmi, eacrs, satdt, &
qimax, diameter, xni0, roqi0, &
fallsum, xlwork2, factor, source, value, &
xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, &
temp, delta3
REAL :: holdc, holdci
INTEGER :: i, j, k, mstepmax, &
iprt, latd, lond, loop, loops, ifsat, n
#ifdef INL
! Temporaries used for inlining fpvs function
REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp
#endif
!
!=================================================================
! compute internal functions
!
cpmcal(x) = cp*(1.-max(x,qmin))+max(x,qmin)*cpv
xlcal(x) = xlv-xlv1*(x-t0c)
! tvcal(x,y) = x+x*ep1*max(y,qmin)
!----------------------------------------------------------------
! size distributions: (x=mixing ratio, y=air density):
! valid for mixing ratio > 1.e-9 kg/kg.
!
#ifdef WSM6_OPTIM
#define PWR(A,B) exp(log(A)*(B))
lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25
lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25
lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25
!
!----------------------------------------------------------------
! diffus: diffusion coefficient of the water vapor
! viscos: kinematic viscosity(m2s-1)
!
diffus(x,y) = 8.794e-5 * PWR(x,1.81) / y ! 8.794e-5*x**1.81/y
viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y
xka(x,y) = 1.414e3*viscos(x,y)*y
diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b))
venfac(a,b,c) = PWR((viscos(b,c)/diffus(b,a)),(.3333333)) &
/sqrt(viscos(b,c))*sqrt(sqrt(den0/c))
conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a))
#else
#define PWR(A,B) ((A)**(B))
lamdar(x,y)=(pidn0r/(x*y))**.25
lamdas(x,y,z)=(pidn0s*z/(x*y))**.25
lamdag(x,y)=(pidn0g/(x*y))**.25
!
!----------------------------------------------------------------
! diffus: diffusion coefficient of the water vapor
! viscos: kinematic viscosity(m2s-1)
!
diffus(x,y) = 8.794e-5*x**1.81/y
viscos(x,y) = 1.496e-6*x**1.5/(x+120.)/y
xka(x,y) = 1.414e3*viscos(x,y)*y
diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b))
venfac(a,b,c) = (viscos(b,c)/diffus(b,a))**(.3333333) &
/viscos(b,c)**(.5)*(den0/c)**0.25
conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a))
#endif
!
pi = 4. * atan(1.)
!
!
!----------------------------------------------------------------
! paddint 0 for negative values generated by dynamics
!
do k = kts, kte
do i = its, ite
qci(i,k,1) = max(qci(i,k,1),0.0)
qrs(i,k,1) = max(qrs(i,k,1),0.0)
qci(i,k,2) = max(qci(i,k,2),0.0)
qrs(i,k,2) = max(qrs(i,k,2),0.0)
qrs(i,k,3) = max(qrs(i,k,3),0.0)
enddo
enddo
!
!----------------------------------------------------------------
! latent heat for phase changes and heat capacity. neglect the
! changes during microphysical process calculation
! emanuel(1994)
!
do k = kts, kte
do i = its, ite
cpm(i,k) = cpmcal(q(i,k))
xl(i,k) = xlcal(t(i,k))
enddo
enddo
!
!----------------------------------------------------------------
! compute the minor time steps.
!
loops = max(nint(delt/dtcldcr),1)
dtcld = delt/loops
if(delt.le.dtcldcr) dtcld = delt
!
do loop = 1,loops
!
!----------------------------------------------------------------
! initialize the large scale variables
!
do i = its, ite
mstep(i) = 1
flgcld(i) = .true.
enddo
!
#ifdef WSM6_OPTIM
do k = kts, kte
CALL VREC
( tvec1(its), den(its,k), ite-its+1 )
do i = its, ite
tvec1(i) = tvec1(i)*den0
enddo
CALL VSQRT
( denfac(its,k), tvec1(its), ite-its+1 )
enddo
#else
do k = kts, kte
do i = its, ite
denfac(i,k) = sqrt(den0/den(i,k))
enddo
enddo
#endif
!
#ifdef INL
hsub = xls
hvap = xlv
cvap = cpv
ttp=t0c+0.01
dldt=cvap-cliq
xa=-dldt/rv
xb=xa+hvap/(rv*ttp)
dldti=cvap-cice
xai=-dldti/rv
xbi=xai+hsub/(rv*ttp)
#endif
do k = kts, kte
do i = its, ite
#ifdef INL
tr=ttp/t(i,k)
qs(i,k,1)=psat*PWR(tr,xa)*exp(xb*(1.-tr))
#else
qs(i,k,1) = fpvs(t(i,k),0)
#endif
qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1))
qs(i,k,1) = max(qs(i,k,1),qmin)
rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin)
#ifdef INL
tr=ttp/t(i,k)
if(t(i,k).lt.ttp) then
qs(i,k,2)=psat*PWR(tr,xai)*exp(xbi*(1.-tr))
else
qs(i,k,2)=psat*PWR(tr,xa)*exp(xb*(1.-tr))
endif
#else
qs(i,k,2) = fpvs(t(i,k),1)
#endif
qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2))
qs(i,k,2) = max(qs(i,k,2),qmin)
rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin)
enddo
enddo
!
!----------------------------------------------------------------
! initialize the variables for microphysical physics
!
!
do k = kts, kte
do i = its, ite
pres(i,k,1) = 0.
pres(i,k,2) = 0.
pres(i,k,3) = 0.
paut(i,k,1) = 0.
paut(i,k,2) = 0.
paut(i,k,3) = 0.
pracw(i,k) = 0.
praci(i,k) = 0.
piacr(i,k) = 0.
psaci(i,k) = 0.
psacw(i,k) = 0.
pracs(i,k) = 0.
psacr(i,k) = 0.
pgacw(i,k) = 0.
pgaci(i,k) = 0.
pgacr(i,k) = 0.
pgacs(i,k) = 0.
pgen(i,k) = 0.
pisd(i,k) = 0.
pcon(i,k) = 0.
psml(i,k) = 0.
pgml(i,k) = 0.
pseml(i,k) = 0.
pgeml(i,k) = 0.
psev(i,k) = 0.
pgev(i,k) = 0.
falk(i,k,1) = 0.
falk(i,k,2) = 0.
falk(i,k,3) = 0.
fall(i,k,1) = 0.
fall(i,k,2) = 0.
fall(i,k,3) = 0.
fallc(i,k) = 0.
falkc(i,k) = 0.
xni(i,k) = 1.e3
enddo
enddo
!
!----------------------------------------------------------------
! compute the fallout term:
! first, vertical terminal velosity for minor loops
!
do k = kts, kte
do i = its, ite
supcol = t0c-t(i,k)
!---------------------------------------------------------------
! n0s: Intercept parameter for snow [m-4] [HDC 6]
!---------------------------------------------------------------
n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
if(qrs(i,k,1).le.qcrmin)then
rslope(i,k,1) = rslopermax
rslopeb(i,k,1) = rsloperbmax
rslope2(i,k,1) = rsloper2max
rslope3(i,k,1) = rsloper3max
else
rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k))
rslopeb(i,k,1) = rslope(i,k,1)**bvtr
rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1)
rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1)
endif
if(qrs(i,k,2).le.qcrmin)then
rslope(i,k,2) = rslopesmax
rslopeb(i,k,2) = rslopesbmax
rslope2(i,k,2) = rslopes2max
rslope3(i,k,2) = rslopes3max
else
rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k))
rslopeb(i,k,2) = rslope(i,k,2)**bvts
rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2)
rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2)
endif
if(qrs(i,k,3).le.qcrmin)then
rslope(i,k,3) = rslopegmax
rslopeb(i,k,3) = rslopegbmax
rslope2(i,k,3) = rslopeg2max
rslope3(i,k,3) = rslopeg3max
else
rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k))
rslopeb(i,k,3) = rslope(i,k,3)**bvtg
rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3)
rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3)
endif
!-------------------------------------------------------------
! Ni: ice crystal number concentraiton [HDC 5c]
!-------------------------------------------------------------
#ifdef WSM6_OPTIM
temp = (den(i,k)*max(qci(i,k,2),qmin))
temp = sqrt(sqrt(temp*temp*temp))
xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
#else
xni(i,k) = min(max(5.38e7*(den(i,k) &
*max(qci(i,k,2),qmin))**0.75,1.e3),1.e6)
#endif
enddo
enddo
!
mstepmax = 1
numdt = 1
do k = kte, kts, -1
do i = its, ite
work1(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k)/delz(i,k)
work1(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k)/delz(i,k)
work1(i,k,3) = pvtg*rslopeb(i,k,3)*denfac(i,k)/delz(i,k)
numdt(i) = max(nint(max(work1(i,k,1),work1(i,k,2),work1(i,k,3)) &
*dtcld+.5),1)
if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i)
enddo
enddo
do i = its, ite
if(mstepmax.le.mstep(i)) mstepmax = mstep(i)
enddo
!
do n = 1, mstepmax
k = kte
do i = its, ite
if(n.le.mstep(i)) then
falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i)
falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i)
falk(i,k,3) = den(i,k)*qrs(i,k,3)*work1(i,k,3)/mstep(i)
fall(i,k,1) = fall(i,k,1)+falk(i,k,1)
fall(i,k,2) = fall(i,k,2)+falk(i,k,2)
fall(i,k,3) = fall(i,k,3)+falk(i,k,3)
qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.)
qrs(i,k,2) = max(qrs(i,k,2)-falk(i,k,2)*dtcld/den(i,k),0.)
qrs(i,k,3) = max(qrs(i,k,3)-falk(i,k,3)*dtcld/den(i,k),0.)
endif
enddo
do k = kte-1, kts, -1
do i = its, ite
if(n.le.mstep(i)) then
falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i)
falk(i,k,2) = den(i,k)*qrs(i,k,2)*work1(i,k,2)/mstep(i)
falk(i,k,3) = den(i,k)*qrs(i,k,3)*work1(i,k,3)/mstep(i)
fall(i,k,1) = fall(i,k,1)+falk(i,k,1)
fall(i,k,2) = fall(i,k,2)+falk(i,k,2)
fall(i,k,3) = fall(i,k,3)+falk(i,k,3)
qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) &
*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.)
qrs(i,k,2) = max(qrs(i,k,2)-(falk(i,k,2)-falk(i,k+1,2) &
*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.)
qrs(i,k,3) = max(qrs(i,k,3)-(falk(i,k,3)-falk(i,k+1,3) &
*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.)
endif
enddo
enddo
do k = kte, kts, -1
do i = its, ite
if(n.le.mstep(i).and.t(i,k).gt.t0c) then
!---------------------------------------------------------------
! psml: melting of snow [RH83 A25]
! (T>T0: S->R)
!---------------------------------------------------------------
xlf = xlf0
work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
if(qrs(i,k,2).gt.0.) then
coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
psml(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. &
*n0sfac(i,k)*(precs1*rslope2(i,k,2) &
+precs2*work2(i,k)*coeres)
psml(i,k) = min(max(psml(i,k)*dtcld/mstep(i), &
-qrs(i,k,2)/mstep(i)),0.)
qrs(i,k,2) = qrs(i,k,2) + psml(i,k)
qrs(i,k,1) = qrs(i,k,1) - psml(i,k)
t(i,k) = t(i,k) + xlf/cpm(i,k)*psml(i,k)
endif
!---------------------------------------------------------------
! pgml: melting of graupel [LFO 47]
! (T>T0: G->R)
!---------------------------------------------------------------
if(qrs(i,k,3).gt.0.) then
coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3))
pgml(i,k) = xka(t(i,k),den(i,k))/xlf &
*(t0c-t(i,k))*(precg1*rslope2(i,k,3) &
+precg2*work2(i,k)*coeres)
pgml(i,k) = min(max(pgml(i,k)*dtcld/mstep(i), &
-qrs(i,k,3)/mstep(i)),0.)
qrs(i,k,3) = qrs(i,k,3) + pgml(i,k)
qrs(i,k,1) = qrs(i,k,1) - pgml(i,k)
t(i,k) = t(i,k) + xlf/cpm(i,k)*pgml(i,k)
endif
endif
enddo
enddo
enddo
!---------------------------------------------------------------
! Vice [ms-1] : fallout of ice crystal [HDC 5a]
!---------------------------------------------------------------
mstepmax = 1
mstep = 1
numdt = 1
do k = kte, kts, -1
do i = its, ite
if(qci(i,k,2).le.0.) then
work2c(i,k) = 0.
else
xmi = den(i,k)*qci(i,k,2)/xni(i,k)
#ifdef WSM6_OPTIM
diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25)
#else
diameter = min(dicon * sqrt(xmi),dimax)
#endif
work1c(i,k) = 1.49e4*diameter**1.31
work2c(i,k) = work1c(i,k)/delz(i,k)
endif
numdt(i) = max(nint(work2c(i,k)*dtcld+.5),1)
if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i)
enddo
enddo
do i = its, ite
if(mstepmax.le.mstep(i)) mstepmax = mstep(i)
enddo
!
do n = 1, mstepmax
k = kte
do i = its, ite
if(n.le.mstep(i)) then
falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i)
holdc = falkc(i,k)
fallc(i,k) = fallc(i,k)+falkc(i,k)
holdci = qci(i,k,2)
qci(i,k,2) = max(qci(i,k,2)-falkc(i,k)*dtcld/den(i,k),0.)
endif
enddo
do k = kte-1, kts, -1
do i = its, ite
if(n.le.mstep(i)) then
falkc(i,k) = den(i,k)*qci(i,k,2)*work2c(i,k)/mstep(i)
holdc = falkc(i,k)
fallc(i,k) = fallc(i,k)+falkc(i,k)
holdci = qci(i,k,2)
qci(i,k,2) = max(qci(i,k,2)-(falkc(i,k)-falkc(i,k+1) &
*delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.)
endif
enddo
enddo
enddo
!
!----------------------------------------------------------------
! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf
!
do i = its, ite
fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)
if(fallsum.gt.0.) then
rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000.
rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i)
endif
enddo
!
!---------------------------------------------------------------
! piml: instantaneous melting of cloud ice [RH83 A28]
! (T>T0: I->C)
!---------------------------------------------------------------
do k = kts, kte
do i = its, ite
supcol = t0c-t(i,k)
xlf = xls-xl(i,k)
if(supcol.lt.0.) xlf = xlf0
if(supcol.lt.0.and.qci(i,k,2).gt.0.) then
qci(i,k,1) = qci(i,k,1) + qci(i,k,2)
t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2)
qci(i,k,2) = 0.
endif
!---------------------------------------------------------------
! pihmf: homogeneous freezing of cloud water below -40c
! (T<-40C: C->I)
!---------------------------------------------------------------
if(supcol.gt.40..and.qci(i,k,1).gt.0.) then
qci(i,k,2) = qci(i,k,2) + qci(i,k,1)
t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1)
qci(i,k,1) = 0.
endif
!---------------------------------------------------------------
! pihtf: heterogeneous freezing of cloud water
! (T0>T>-40C: C->I)
!---------------------------------------------------------------
if(supcol.gt.0..and.qci(i,k,1).gt.qmin) then
#ifdef WSM6_OPTIM
pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) &
*den(i,k)/denr/xncr*qci(i,k,1)*qci(i,k,1)*dtcld,qci(i,k,1))
#else
pfrzdtc = min(pfrz1*(exp(pfrz2*supcol)-1.) &
*den(i,k)/denr/xncr*qci(i,k,1)**2*dtcld,qci(i,k,1))
#endif
qci(i,k,2) = qci(i,k,2) + pfrzdtc
t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc
qci(i,k,1) = qci(i,k,1)-pfrzdtc
endif
!---------------------------------------------------------------
! pfrz: freezing of rain water [LFO 45]
! (T<T0, R->S)
!---------------------------------------------------------------
if(supcol.gt.0..and.qrs(i,k,1).gt.0.) then
#ifdef WSM6_OPTIM
temp = rslope3(i,k,1)
temp = temp*temp*rslope(i,k,1)
pfrzdtr = min(20.*(pi*pi)*pfrz1*n0r*denr/den(i,k)*temp &
*(exp(pfrz2*supcol)-1.)*dtcld, &
qrs(i,k,1))
#else
pfrzdtr = min(20.*pi**2*pfrz1*n0r*denr/den(i,k) &
*rslope3(i,k,1)**2*rslope(i,k,1) &
*(exp(pfrz2*supcol)-1.)*dtcld,qrs(i,k,1))
#endif
qrs(i,k,3) = qrs(i,k,3) + pfrzdtr
t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr
qrs(i,k,1) = qrs(i,k,1)-pfrzdtr
endif
enddo
enddo
!
!
!----------------------------------------------------------------
! rsloper: reverse of the slope parameter of the rain(m)
! xka: thermal conductivity of air(jm-1s-1k-1)
! work1: the thermodynamic term in the denominator associated with
! heat conduction and vapor diffusion
! (ry88, y93, h85)
! work2: parameter associated with the ventilation effects(y93)
!
do k = kts, kte
do i = its, ite
if(qrs(i,k,1).le.qcrmin)then
rslope(i,k,1) = rslopermax
rslopeb(i,k,1) = rsloperbmax
rslope2(i,k,1) = rsloper2max
rslope3(i,k,1) = rsloper3max
else
rslope(i,k,1) = 1./lamdar(qrs(i,k,1),den(i,k))
rslopeb(i,k,1) = rslope(i,k,1)**bvtr
rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1)
rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1)
endif
if(qrs(i,k,2).le.qcrmin)then
rslope(i,k,2) = rslopesmax
rslopeb(i,k,2) = rslopesbmax
rslope2(i,k,2) = rslopes2max
rslope3(i,k,2) = rslopes3max
else
rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k))
rslopeb(i,k,2) = rslope(i,k,2)**bvts
rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2)
rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2)
endif
if(qrs(i,k,3).le.qcrmin)then
rslope(i,k,3) = rslopegmax
rslopeb(i,k,3) = rslopegbmax
rslope2(i,k,3) = rslopeg2max
rslope3(i,k,3) = rslopeg3max
else
rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k))
rslopeb(i,k,3) = rslope(i,k,3)**bvtg
rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3)
rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3)
endif
enddo
enddo
!
do k = kts, kte
do i = its, ite
work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1))
work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2))
work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
enddo
enddo
!
!===============================================================
!
! warm rain processes
!
! - follows the processes in RH83 and LFO except for autoconcersion
!
!===============================================================
!
do k = kts, kte
do i = its, ite
supsat = max(q(i,k),qmin)-qs(i,k,1)
satdt = supsat/dtcld
!---------------------------------------------------------------
! paut1: auto conversion rate from cloud to rain [HDC 16]
! (C->R)
!---------------------------------------------------------------
if(qci(i,k,1).gt.qc0) then
paut(i,k,1) = qck1*qci(i,k,1)**(7./3.)
paut(i,k,1) = min(paut(i,k,1),qci(i,k,1)/dtcld)
endif
!---------------------------------------------------------------
! pracw: accretion of cloud water by rain [LFO 51]
! (C->R)
!---------------------------------------------------------------
if(qrs(i,k,1).gt.qcrmin.and.qci(i,k,1).gt.qmin) then
pracw(i,k) = min(pacrr*rslope3(i,k,1)*rslopeb(i,k,1) &
*qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld)
endif
!---------------------------------------------------------------
! pres1: evaporation/condensation rate of rain [HDC 14]
! (V->R or R->V)
!---------------------------------------------------------------
if(qrs(i,k,1).gt.0.) then
coeres = rslope2(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1))
pres(i,k,1) = (rh(i,k,1)-1.)*(precr1*rslope2(i,k,1) &
+precr2*work2(i,k)*coeres)/work1(i,k,1)
if(pres(i,k,1).lt.0.) then
pres(i,k,1) = max(pres(i,k,1),-qrs(i,k,1)/dtcld)
pres(i,k,1) = max(pres(i,k,1),satdt/2)
else
pres(i,k,1) = min(pres(i,k,1),satdt/2)
endif
endif
enddo
enddo
!
!===============================================================
!
! cold rain processes
!
! - follows the revised ice microphysics processes in HDC
! - the processes same as in RH83 and RH84 and LFO behave
! following ice crystal hapits defined in HDC, inclduing
! intercept parameter for snow (n0s), ice crystal number
! concentration (ni), ice nuclei number concentration
! (n0i), ice diameter (d)
!
!===============================================================
!
do k = kts, kte
do i = its, ite
supcol = t0c-t(i,k)
supsat = max(q(i,k),qmin)-qs(i,k,2)
satdt = supsat/dtcld
ifsat = 0
!-------------------------------------------------------------
! Ni: ice crystal number concentraiton [HDC 5c]
!-------------------------------------------------------------
#ifdef WSM6_OPTIM
temp = (den(i,k)*max(qci(i,k,2),qmin))
temp = sqrt(sqrt(temp*temp*temp))
xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
#else
xni(i,k) = min(max(5.38e7*(den(i,k) &
*max(qci(i,k,2),qmin))**0.75,1.e3),1.e6)
#endif
eacrs = exp(0.05*(-supcol))
!
xmi = den(i,k)*qci(i,k,2)/xni(i,k)
diameter = min(dicon * sqrt(xmi),dimax)
vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k)
vt2s=pvts*rslopeb(i,k,2)*denfac(i,k)
vt2g=pvtg*rslopeb(i,k,3)*denfac(i,k)
if(supcol.gt.0.and.qci(i,k,2).gt.qmin) then
if(qrs(i,k,1).gt.qcrmin) then
!-------------------------------------------------------------
! praci: Accretion of cloud ice by rain [LFO 25]
! (T<T0: I->R)
!-------------------------------------------------------------
praci(i,k) = pacrr*rslope3(i,k,1)*rslopeb(i,k,1) &
*qci(i,k,2)*denfac(i,k)
praci(i,k) = min(praci(i,k),qci(i,k,2)/dtcld)
!-------------------------------------------------------------
! piacr: Accretion of rain by cloud ice [LFO 26]
! (T<T0: R->S or R->G)
!-------------------------------------------------------------
piacr(i,k) = pi**2*avtr*n0r*denr*xni(i,k)*denfac(i,k) &
*g6pbr*rslope3(i,k,1)*rslope3(i,k,1) &
*rslopeb(i,k,1)/24./den(i,k)
piacr(i,k) = min(piacr(i,k),qrs(i,k,1)/dtcld)
endif
!-------------------------------------------------------------
! psaci: Accretion of cloud ice by snow [HDC 10]
! (T<T0: I->S)
!-------------------------------------------------------------
if(qrs(i,k,2).gt.qcrmin) then
psaci(i,k) = pacrs*n0sfac(i,k)*eacrs*rslope3(i,k,2) &
*rslopeb(i,k,2)*qci(i,k,2)*denfac(i,k)
psaci(i,k) = min(psaci(i,k),qci(i,k,2)/dtcld)
endif
!-------------------------------------------------------------
! pgaci: Accretion of cloud ice by graupel [LFO 41]
! (T<T0: I->G)
!-------------------------------------------------------------
if(qrs(i,k,3).gt.qcrmin) then
egi = exp(0.07*(-supcol))
pgaci(i,k) = pacrg*egi*rslope3(i,k,3)*rslopeb(i,k,3) &
*qci(i,k,2)*denfac(i,k)
pgaci(i,k) = min(pgaci(i,k),qci(i,k,2)/dtcld)
endif
endif
!-------------------------------------------------------------
! psacw: Accretion of cloud water by snow [LFO 24]
! (T<T0: C->G, and T>=T0: C->R)
!-------------------------------------------------------------
if(qrs(i,k,2).gt.qcrmin.and.qci(i,k,1).gt.qmin) then
psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2) &
*rslopeb(i,k,2)*qci(i,k,1)*denfac(i,k) &
,qci(i,k,1)/dtcld)
endif
!-------------------------------------------------------------
! pgacw: Accretion of cloud water by graupel [LFO 40]
! (T<T0: C->G, and T>=T0: C->R)
!-------------------------------------------------------------
if(qrs(i,k,3).gt.qcrmin.and.qci(i,k,1).gt.qmin) then
pgacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3) &
*qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld)
endif
!-------------------------------------------------------------
! pracs: Accretion of snow by rain [LFO 27]
! (T<T0: S->G)
!-------------------------------------------------------------
if(qrs(i,k,2).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then
if(supcol.gt.0) then
acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2)*rslope(i,k,1) &
+2.*rslope3(i,k,2)*rslope2(i,k,2)*rslope2(i,k,1) &
+.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope3(i,k,1)
pracs(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2r-vt2s) &
*(dens/den(i,k))*acrfac
pracs(i,k) = min(pracs(i,k),qrs(i,k,2)/dtcld)
endif
!-------------------------------------------------------------
! psacr: Accretion of rain by snow [LFO 28]
! (T<T0:R->S or R->G) (T>=T0: enhance melting of snow)
!-------------------------------------------------------------
acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,2) &
+2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,2) &
+.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,2)
psacr(i,k) = pi**2*n0r*n0s*n0sfac(i,k)*abs(vt2s-vt2r) &
*(denr/den(i,k))*acrfac
psacr(i,k) = min(psacr(i,k),qrs(i,k,1)/dtcld)
endif
!-------------------------------------------------------------
! pgacr: Accretion of rain by graupel [LFO 42]
! (T<T0: R->G) (T>=T0: enhance melting of graupel)
!-------------------------------------------------------------
if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,1).gt.qcrmin) then
acrfac = 5.*rslope3(i,k,1)*rslope3(i,k,1)*rslope(i,k,3) &
+2.*rslope3(i,k,1)*rslope2(i,k,1)*rslope2(i,k,3) &
+.5*rslope2(i,k,1)*rslope2(i,k,1)*rslope3(i,k,3)
pgacr(i,k) = pi**2*n0r*n0g*abs(vt2g-vt2r)*(denr/den(i,k)) &
*acrfac
pgacr(i,k) = min(pgacr(i,k),qrs(i,k,1)/dtcld)
endif
!-------------------------------------------------------------
! pgacs: Accretion of snow by graupel [LFO 29]
! (S->G)
!-------------------------------------------------------------
if(qrs(i,k,3).gt.qcrmin.and.qrs(i,k,2).gt.qcrmin) then
acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2)*rslope(i,k,3) &
+2.*rslope3(i,k,2)*rslope2(i,k,2)*rslope2(i,k,3) &
+.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope3(i,k,3)
if(supcol.gt.0) then
egs = exp(-0.09*supcol)
else
egs = 1.
endif
pgacs(i,k) = pi**2*egs*n0s*n0sfac(i,k)*n0g*abs(vt2g-vt2s) &
*(dens/den(i,k))*acrfac
pgacs(i,k) = min(pgacs(i,k),qrs(i,k,2)/dtcld)
endif
if(supcol.le.0) then
xlf = xlf0
!-------------------------------------------------------------
! pseml: Enhanced melting of snow by accretion of water
! (T>=T0: S->R)
!-------------------------------------------------------------
if(qrs(i,k,2).gt.0.) &
pseml(i,k) = min(max(cliq*supcol*(psacw(i,k)+psacr(i,k)) &
/xlf,-qrs(i,k,2)/dtcld),0.)
!-------------------------------------------------------------
! pgeml: Enhanced melting of graupel by accretion of water [RH84 A21-A22]
! (T>=T0: G->R)
!-------------------------------------------------------------
if(qrs(i,k,3).gt.0.) &
pgeml(i,k) = min(max(cliq*supcol*(pgacw(i,k)+pgacr(i,k)) &
/xlf,-qrs(i,k,3)/dtcld),0.)
endif
if(supcol.gt.0) then
!-------------------------------------------------------------
! pisd: Deposition/Sublimation rate of ice [HDC 9]
! (T<T0: V->I or I->V)
!-------------------------------------------------------------
if(qci(i,k,2).gt.0.and.ifsat.ne.1) then
pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2)
supice = satdt-pres(i,k,1)
if(pisd(i,k).lt.0.) then
pisd(i,k) = max(max(pisd(i,k),satdt/2),supice)
pisd(i,k) = max(pisd(i,k),-qci(i,k,2)/dtcld)
else
pisd(i,k) = min(min(pisd(i,k),satdt/2),supice)
endif
if(abs(pres(i,k,1)+pisd(i,k)).ge.abs(satdt)) ifsat = 1
endif
!-------------------------------------------------------------
! pres2: deposition/sublimation rate of snow [HDC 14]
! (T<T0: V->S or S->V)
!-------------------------------------------------------------
if(qrs(i,k,2).gt.0..and.ifsat.ne.1) then
coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
pres(i,k,2) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1 &
*rslope2(i,k,2)+precs2*work2(i,k) &
*coeres)/work1(i,k,2)
supice = satdt-pres(i,k,1)-pisd(i,k)
if(pres(i,k,2).lt.0.) then
pres(i,k,2) = max(pres(i,k,2),-qrs(i,k,2)/dtcld)
pres(i,k,2) = max(max(pres(i,k,2),satdt/2),supice)
else
pres(i,k,2) = min(min(pres(i,k,2),satdt/2),supice)
endif
if(abs(pres(i,k,1)+pisd(i,k)+pres(i,k,2)).ge.abs(satdt)) &
ifsat = 1
endif
!-------------------------------------------------------------
! pres3: deposition/sublimation rate of graupel [LFO 46]
! (T<T0: V->G or G->V)
!-------------------------------------------------------------
if(qrs(i,k,3).gt.0..and.ifsat.ne.1) then
coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3))
pres(i,k,3) = (rh(i,k,2)-1.)*(precg1*rslope2(i,k,3) &
+precg2*work2(i,k)*coeres)/work1(i,k,2)
supice = satdt-pres(i,k,1)-pisd(i,k)-pres(i,k,2)
if(pres(i,k,3).lt.0.) then
pres(i,k,3) = max(pres(i,k,3),-qrs(i,k,3)/dtcld)
pres(i,k,3) = max(max(pres(i,k,3),satdt/2),supice)
else
pres(i,k,3) = min(min(pres(i,k,3),satdt/2),supice)
endif
if(abs(pres(i,k,1)+pisd(i,k)+pres(i,k,2)+pres(i,k,3)).ge. &
abs(satdt)) ifsat = 1
endif
!-------------------------------------------------------------
! pgen: generation(nucleation) of ice from vapor [HDC 7-8]
! (T<T0: V->I)
!-------------------------------------------------------------
if(supsat.gt.0.and.ifsat.ne.1) then
supice = satdt-pres(i,k,1)-pisd(i,k)-pres(i,k,2)-pres(i,k,3)
xni0 = 1.e3*exp(0.1*supcol)
roqi0 = 4.92e-11*xni0**1.33
pgen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.)) &
/dtcld)
pgen(i,k) = min(min(pgen(i,k),satdt),supice)
endif
!
!-------------------------------------------------------------
! paut2: conversion(aggregation) of ice to snow [HDC 12]
! (T<T0: I->S)
!-------------------------------------------------------------
if(qci(i,k,2).gt.0.) then
qimax = roqimax/den(i,k)
paut(i,k,2) = max(0.,(qci(i,k,2)-qimax)/dtcld)
endif
!
!-------------------------------------------------------------
! paut3: conversion(aggregation) of snow to graupel [LFO 37]
! (T<T0: S->G)
!-------------------------------------------------------------
if(qrs(i,k,2).gt.0.) then
alpha2 = 1.e-3*exp(0.09*(-supcol))
paut(i,k,3) = min(max(0.,alpha2*(qrs(i,k,2)-qs0)) &
,qrs(i,k,2)/dtcld)
endif
endif
!
!-------------------------------------------------------------
! psev: Evaporation of melting snow [RH83 A27]
! (T>=T0: S->V)
!-------------------------------------------------------------
if(supcol.lt.0.) then
if(qrs(i,k,2).gt.0..and.rh(i,k,1).lt.1.) then
coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
psev(i,k) = (rh(i,k,1)-1.)*n0sfac(i,k)*(precs1 &
*rslope2(i,k,2)+precs2*work2(i,k) &
*coeres)/work1(i,k,1)
psev(i,k) = min(max(psev(i,k),-qrs(i,k,2)/dtcld),0.)
endif
!-------------------------------------------------------------
! pgev: Evaporation of melting graupel [RH84 A19]
! (T>=T0: G->V)
!-------------------------------------------------------------
if(qrs(i,k,3).gt.0..and.rh(i,k,1).lt.1.) then
coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3))
pgev(i,k) = (rh(i,k,1)-1.)*(precg1*rslope2(i,k,3) &
+precg2*work2(i,k)*coeres)/work1(i,k,1)
pgev(i,k) = min(max(pgev(i,k),-qrs(i,k,3)/dtcld),0.)
endif
endif
enddo
enddo
!
!
!----------------------------------------------------------------
! check mass conservation of generation terms and feedback to the
! large scale
!
do k = kts, kte
do i = its, ite
!
delta2=0.
delta3=0.
if(qrs(i,k,1).lt.1.e-4.and.qrs(i,k,2).lt.1.e-4) delta2=1.
if(qrs(i,k,1).lt.1.e-4) delta3=1.
if(t(i,k).le.t0c) then
!
! cloud water
!
value = max(qmin,qci(i,k,1))
source = (paut(i,k,1)+pracw(i,k)+psacw(i,k)+pgacw(i,k))*dtcld
if (source.gt.value) then
factor = value/source
paut(i,k,1) = paut(i,k,1)*factor
pracw(i,k) = pracw(i,k)*factor
psacw(i,k) = psacw(i,k)*factor
pgacw(i,k) = pgacw(i,k)*factor
endif
!
! cloud ice
!
value = max(qmin,qci(i,k,2))
source = (paut(i,k,2)-pgen(i,k)-pisd(i,k)+praci(i,k) &
+psaci(i,k)+pgaci(i,k))*dtcld
if (source.gt.value) then
factor = value/source
paut(i,k,2) = paut(i,k,2)*factor
pgen(i,k) = pgen(i,k)*factor
pisd(i,k) = pisd(i,k)*factor
praci(i,k) = praci(i,k)*factor
psaci(i,k) = psaci(i,k)*factor
pgaci(i,k) = pgaci(i,k)*factor
endif
!
! rain
!
value = max(qmin,qrs(i,k,1))
source = (-paut(i,k,1)-pres(i,k,1)-pracw(i,k)+piacr(i,k) &
+psacr(i,k)+pgacr(i,k))*dtcld
if (source.gt.value) then
factor = value/source
paut(i,k,1) = paut(i,k,1)*factor
pres(i,k,1) = pres(i,k,1)*factor
pracw(i,k) = pracw(i,k)*factor
piacr(i,k) = piacr(i,k)*factor
psacr(i,k) = psacr(i,k)*factor
pgacr(i,k) = pgacr(i,k)*factor
endif
!
! snow
!
value = max(qmin,qrs(i,k,2))
source = -(pres(i,k,2)+paut(i,k,2)-paut(i,k,3) &
+piacr(i,k)*delta3+praci(i,k)*delta3 &
-pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2 &
+psaci(i,k)-pgacs(i,k) )*dtcld
if (source.gt.value) then
factor = value/source
pres(i,k,2) = pres(i,k,2)*factor
paut(i,k,2) = paut(i,k,2)*factor
paut(i,k,3) = paut(i,k,3)*factor
piacr(i,k) = piacr(i,k)*factor
praci(i,k) = praci(i,k)*factor
psaci(i,k) = psaci(i,k)*factor
pracs(i,k) = pracs(i,k)*factor
psacr(i,k) = psacr(i,k)*factor
pgacs(i,k) = pgacs(i,k)*factor
endif
!
! graupel
!
value = max(qmin,qrs(i,k,3))
source = -(pres(i,k,3)+paut(i,k,3)+psacw(i,k) &
+piacr(i,k)*(1.-delta3)+praci(i,k)*(1.-delta3) &
+psacr(i,k)*(1.-delta2)+pracs(i,k)*(1.-delta2) &
+pgaci(i,k)+pgacw(i,k)+pgacr(i,k)+pgacs(i,k))*dtcld
if (source.gt.value) then
factor = value/source
pres(i,k,3) = pres(i,k,3)*factor
paut(i,k,3) = paut(i,k,3)*factor
psacw(i,k) = psacw(i,k)*factor
piacr(i,k) = piacr(i,k)*factor
praci(i,k) = praci(i,k)*factor
psacr(i,k) = psacr(i,k)*factor
pracs(i,k) = pracs(i,k)*factor
pgacw(i,k) = pgacw(i,k)*factor
pgaci(i,k) = pgaci(i,k)*factor
pgacr(i,k) = pgacr(i,k)*factor
pgacs(i,k) = pgacs(i,k)*factor
endif
!
work2(i,k)=-(pres(i,k,1)+pres(i,k,2)+pres(i,k,3)+pgen(i,k) &
+pisd(i,k))
! update
q(i,k) = q(i,k)+work2(i,k)*dtcld
qci(i,k,1) = max(qci(i,k,1)-(paut(i,k,1)+pracw(i,k) &
+psacw(i,k)+pgacw(i,k))*dtcld,0.)
qrs(i,k,1) = max(qrs(i,k,1)+(paut(i,k,1)+pracw(i,k) &
+pres(i,k,1)-piacr(i,k)-pgacr(i,k) &
-psacr(i,k))*dtcld,0.)
qci(i,k,2) = max(qci(i,k,2)-(paut(i,k,2)+praci(i,k) &
+psaci(i,k)+pgaci(i,k)-pgen(i,k)-pisd(i,k)) &
*dtcld,0.)
qrs(i,k,2) = max(qrs(i,k,2)+(pres(i,k,2)+paut(i,k,2) &
-paut(i,k,3)+piacr(i,k)*delta3 &
+praci(i,k)*delta3+psaci(i,k)-pgacs(i,k) &
-pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2) &
*dtcld,0.)
qrs(i,k,3) = max(qrs(i,k,3)+(pres(i,k,3)+paut(i,k,3) &
+psacw(i,k)+piacr(i,k)*(1.-delta3) &
+praci(i,k)*(1.-delta3)+psacr(i,k)*(1.-delta2)&
+pracs(i,k)*(1.-delta2)+pgaci(i,k)+pgacw(i,k) &
+pgacr(i,k)+pgacs(i,k))*dtcld,0.)
xlf = xls-xl(i,k)
xlwork2 = -xls*(pres(i,k,2)+pres(i,k,3)+pisd(i,k)+pgen(i,k)) &
-xl(i,k)*pres(i,k,1)-xlf*(piacr(i,k)+psacw(i,k) &
+pgacw(i,k)+pgacr(i,k)+psacr(i,k))
t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld
else
!
! cloud water
!
value = max(qmin,qci(i,k,1))
source=(paut(i,k,1)+pracw(i,k)+psacw(i,k)+pgacw(i,k))*dtcld
if (source.gt.value) then
factor = value/source
paut(i,k,1) = paut(i,k,1)*factor
pracw(i,k) = pracw(i,k)*factor
psacw(i,k) = psacw(i,k)*factor
pgacw(i,k) = pgacw(i,k)*factor
endif
!
! rain
!
value = max(qmin,qrs(i,k,1))
source = (-psacw(i,k)-paut(i,k,1)+pseml(i,k)+pgeml(i,k) &
-pracw(i,k)-pgacw(i,k)-pres(i,k,1))*dtcld
if (source.gt.value) then
factor = value/source
paut(i,k,1) = paut(i,k,1)*factor
pres(i,k,1) = pres(i,k,1)*factor
pgacw(i,k) = pgacw(i,k)*factor
pracw(i,k) = pracw(i,k)*factor
psacw(i,k) = psacw(i,k)*factor
pseml(i,k) = pseml(i,k)*factor
pgeml(i,k) = pgeml(i,k)*factor
endif
!
! snow
!
value = max(qcrmin,qrs(i,k,2))
source=(pgacs(i,k)-pseml(i,k)-psev(i,k))*dtcld
if (source.gt.value) then
factor = value/source
pgacs(i,k) = pgacs(i,k)*factor
psev(i,k) = psev(i,k)*factor
pseml(i,k) = pseml(i,k)*factor
endif
!
! graupel
!
value = max(qcrmin,qrs(i,k,3))
source=-(pgacs(i,k)+pgev(i,k)+pgeml(i,k))*dtcld
if (source.gt.value) then
factor = value/source
pgacs(i,k) = pgacs(i,k)*factor
pgev(i,k) = pgev(i,k)*factor
pgeml(i,k) = pgeml(i,k)*factor
endif
work2(i,k)=-(pres(i,k,1)+psev(i,k)+pgev(i,k))
! update
q(i,k) = q(i,k)+work2(i,k)*dtcld
qci(i,k,1) = max(qci(i,k,1)-(paut(i,k,1)+pracw(i,k) &
+psacw(i,k)+pgacw(i,k))*dtcld,0.)
qrs(i,k,1) = max(qrs(i,k,1)+(paut(i,k,1)+pracw(i,k) &
+pres(i,k,1)+psacw(i,k)+pgacw(i,k)-pseml(i,k) &
-pgeml(i,k))*dtcld,0.)
qrs(i,k,2) = max(qrs(i,k,2)+(psev(i,k)-pgacs(i,k) &
+pseml(i,k))*dtcld,0.)
qrs(i,k,3) = max(qrs(i,k,3)+(pgacs(i,k)+pgev(i,k) &
+pgeml(i,k))*dtcld,0.)
xlf = xls-xl(i,k)
xlwork2 = -xl(i,k)*(pres(i,k,1)+psev(i,k)+pgev(i,k)) &
-xlf*(pseml(i,k)+pgeml(i,k))
t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld
endif
enddo
enddo
!
#ifdef INL
hsub = xls
hvap = xlv
cvap = cpv
ttp=t0c+0.01
dldt=cvap-cliq
xa=-dldt/rv
xb=xa+hvap/(rv*ttp)
dldti=cvap-cice
xai=-dldti/rv
xbi=xai+hsub/(rv*ttp)
#endif
do k = kts, kte
do i = its, ite
#ifdef INL
tr=ttp/t(i,k)
qs(i,k,1)=psat*PWR(tr,xa)*exp(xb*(1.-tr))
#else
qs(i,k,1) = fpvs(t(i,k),0)
#endif
qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1))
qs(i,k,1) = max(qs(i,k,1),qmin)
#ifdef INL
tr=ttp/t(i,k)
if(t(i,k).lt.ttp) then
qs(i,k,2)=psat*PWR(tr,xai)*exp(xbi*(1.-tr))
else
qs(i,k,2)=psat*PWR(tr,xa)*exp(xb*(1.-tr))
endif
#else
qs(i,k,2) = fpvs(t(i,k),1)
#endif
qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2))
qs(i,k,2) = max(qs(i,k,2),qmin)
enddo
enddo
!
!----------------------------------------------------------------
! pcon: condensational/evaporational rate of cloud water [RH83 A6]
! if there exists additional water vapor condensated/if
! evaporation of cloud water is not enough to remove subsaturation
!
do k = kts, kte
do i = its, ite
work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k))
work2(i,k) = qci(i,k,1)+work1(i,k,1)
pcon(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld)
if(qci(i,k,1).gt.0..and.work1(i,k,1).lt.0.) &
pcon(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld
q(i,k) = q(i,k)-pcon(i,k)*dtcld
qci(i,k,1) = max(qci(i,k,1)+pcon(i,k)*dtcld,0.)
t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld
enddo
enddo
!
!
!----------------------------------------------------------------
! padding for small values
!
do k = kts, kte
do i = its, ite
if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0
if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0
enddo
enddo
enddo ! big loops
END SUBROUTINE wsm62d_WRF
! ...................................................................
REAL FUNCTION rgmma(x)
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
! rgmma function: use infinite product form
REAL :: euler
PARAMETER (euler=0.577215664901532)
REAL :: x, y
INTEGER :: i
if(x.eq.1.)then
rgmma=0.
else
rgmma=x*exp(euler*x)
do i=1,10000
y=float(i)
rgmma=rgmma*(1.000+x/y)*exp(-x/y)
enddo
rgmma=1./rgmma
endif
END FUNCTION rgmma
!
!--------------------------------------------------------------------------
REAL FUNCTION fpvs(t,ice)
!--------------------------------------------------------------------------
IMPLICIT NONE
!--------------------------------------------------------------------------
REAL t,dldt,xa,xb,dldti,xai,xbi,ttp,tr
INTEGER ice
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ttp=t0c+0.01
dldt=cpv-cliq
xa=-dldt/rv
xb=xa+xlv/(rv*ttp)
dldti=cpv-cice
xai=-dldti/rv
xbi=xai+xls/(rv*ttp)
tr=ttp/t
if(t.lt.ttp.and.ice.eq.1) then
fpvs=psat*(tr**xai)*exp(xbi*(1.-tr))
else
fpvs=psat*(tr**xa)*exp(xb*(1.-tr))
endif
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
END FUNCTION fpvs
!-------------------------------------------------------------------
SUBROUTINE wsm6init(scheme) 1
!-------------------------------------------------------------------
IMPLICIT NONE
INTEGER, INTENT(IN) :: scheme
!-------------------------------------------------------------------
!.... constants which may not be tunable
REAL :: pi
pi = 4.*atan(1.)
xlv1 = cliq-cpv
qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3
qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03
bvtr1 = 1.+bvtr
bvtr2 = 2.5+.5*bvtr
bvtr3 = 3.+bvtr
bvtr4 = 4.+bvtr
bvtr6 = 6.+bvtr
g1pbr = rgmma(bvtr1)
g3pbr = rgmma(bvtr3)
g4pbr = rgmma(bvtr4) ! 17.837825
g6pbr = rgmma(bvtr6)
g5pbro2 = rgmma(bvtr2) ! 1.8273
pvtr = avtr*g4pbr/6.
eacrr = 1.0
IF (scheme == 0 .OR. scheme == 1) THEN
pacrr = pi*n0r*avtr*g3pbr*.25*eacrr
precr1 = 2.*pi*n0r*.78
precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2
pidn0r = pi*denr*n0r
ELSE IF (scheme == 2) THEN
!--------------------------------------------------------
! change made on March 4 2006 by Zhang for the following three lines with n0r
! calculated inside
pacrr = pi*avtr*g3pbr*.25*eacrr
precr1 = 2.*pi**.78
precr2 = 2.*pi*.31*avtr**.5*g5pbro2
pidn0r = pi*denr !*n0r
!----------------------------------------------------
ELSE
WRITE(6,*) 'WARNNING: WRONG scheme inside WSM6 microphysics scheme.'
END IF
xm0 = (di0/dicon)**2
xmmax = (dimax/dicon)**2
roqimax = 2.08e22*dimax**8
!
bvts1 = 1.+bvts
bvts2 = 2.5+.5*bvts
bvts3 = 3.+bvts
bvts4 = 4.+bvts
g1pbs = rgmma(bvts1) !.8875
g3pbs = rgmma(bvts3)
g4pbs = rgmma(bvts4) ! 12.0786
g5pbso2 = rgmma(bvts2)
pvts = avts*g4pbs/6.
pacrs = pi*n0s*avts*g3pbs*.25
precs1 = 4.*n0s*.65
precs2 = 4.*n0s*.44*avts**.5*g5pbso2
pidn0s = pi*dens*n0s
!
pacrc = pi*n0s*avts*g3pbs*.25*eacrc
!
bvtg1 = 1.+bvtg
bvtg2 = 2.5+.5*bvtg
bvtg3 = 3.+bvtg
bvtg4 = 4.+bvtg
g1pbg = rgmma(bvtg1)
g3pbg = rgmma(bvtg3)
g4pbg = rgmma(bvtg4)
pacrg = pi*n0g*avtg*g3pbg*.25
g5pbgo2 = rgmma(bvtg2)
pvtg = avtg*g4pbg/6.
! pacrg = pi*n0g*avtg*g3pbg*.25
precg1 = 2.*pi*n0g*.78
precg2 = 2.*pi*n0g*.31*avtg**.5*g5pbgo2
pidn0g = pi*deng*n0g
!
rslopermax = 1./lamdarmax
rslopesmax = 1./lamdasmax
rslopegmax = 1./lamdagmax
rsloperbmax = rslopermax ** bvtr
rslopesbmax = rslopesmax ** bvts
rslopegbmax = rslopegmax ** bvtg
rsloper2max = rslopermax * rslopermax
rslopes2max = rslopesmax * rslopesmax
rslopeg2max = rslopegmax * rslopegmax
rsloper3max = rsloper2max * rslopermax
rslopes3max = rslopes2max * rslopesmax
rslopeg3max = rslopeg2max * rslopegmax
!
END SUBROUTINE wsm6init
#ifdef WSM6_OPTIM
subroutine vrec(y,x,n) 1
real*8 x(*),y(*)
do 10 j=1,n
y(j)=1.d0/x(j)
10 continue
return
end subroutine vrec
subroutine vsrec(y,x,n)
real*4 x(*),y(*)
do 10 j=1,n
y(j)=1.d0/x(j)
10 continue
return
end subroutine vsrec
subroutine vsqrt(y,x,n) 1
real*8 x(*),y(*)
do 10 j=1,n
y(j)=sqrt(x(j))
10 continue
return
end subroutine vsqrt
subroutine vssqrt(y,x,n)
real*4 x(*),y(*)
do 10 j=1,n
y(j)=sqrt(x(j))
10 continue
return
end subroutine vssqrt
#endif
END MODULE module_mp_wsm6